Skip to main content

Hepatocellular Carcinoma

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Hepatocellular carcinoma can be diagnosed by CT or MR once the typical vascular pattern is depicted, avoiding the need of invasive procedures. However, biopsy is still required for the final diagnosis in a significant proportion of cases due to the limited sensitivity of the noninvasive diagnostic criteria, especially in small nodules. Initial results with the advent of liver-specific contrast agents and the introduction of diffusion-weighted imaging in liver protocols showed an improvement in the sensitivity of the magnetic resonance imaging for the diagnosis of HCC. However, currently there is limited information regarding their impact in assessing the HCC response to locoregional therapeutics.

After the introduction of new molecular therapeutics for advanced HCC, functional imaging techniques represent the main potential tool to detect tumor response in the light of the limitations of conventional RECIST, mRECIST, and EASL criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AASLD:

American Association for the Study of Liver Diseases

ARFI:

Acoustic radiation force impulse imaging

CEUS:

Contrast-enhanced ultrasound

CT:

Computed tomography

DCE:

Dynamic contrast enhancement

DWI:

Diffusion-weighted imaging

EASL:

European Association for the Study of the Liver

HB:

Hepatobiliary

HCC:

Hepatocellular carcinoma

ICC:

Intrahepatic cholangiocarcinoma

MRI:

Magnetic resonance imaging

SI:

Signal intensity

TACE:

Transarterial chemoembolization

US:

Ultrasound

References

  1. Ferenci P, et al. Hepatocellular carcinoma (HCC): a global perspective. J Clin Gastroenterol. 2010;44:239–45.

    Article  PubMed  Google Scholar 

  2. Parkin DM. The evolution of the population-based cancer registry. Nat Rev Cancer. 2006;6:603–12.

    Article  CAS  PubMed  Google Scholar 

  3. Sangiovanni A, et al. The natural history of compensated cirrhosis due to hepatitis C virus: a 17-year cohort study of 214 patients. Hepatology. 2006;43:1303–10.

    Article  PubMed  Google Scholar 

  4. Appelbaum L, et al. Focal hepatic lesions: US-guided biopsy–lessons from review of cytologic and pathologic examination results. Radiology. 2009;250:453–8.

    Article  PubMed  Google Scholar 

  5. Whitmire LF, et al. Imaging guided percutaneous hepatic biopsy: diagnostic accuracy and safety. J Clin Gastroenterol. 1985;7:511–5.

    Article  CAS  PubMed  Google Scholar 

  6. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Vilana R, et al. Is microbubble-enhanced ultrasonography sufficient for assessment of response to percutaneous treatment in patients with early hepatocellular carcinoma? Eur Radiol. 2006;16:2454–62.

    Article  CAS  PubMed  Google Scholar 

  8. Riaz A, et al. Role of the EASL, RECIST, and WHO response guidelines alone or in combination for hepatocellular carcinoma: radiologic-pathologic correlation. J Hepatol. 2011;54:695–704.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Forner A, et al. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer. 2009;115:616–23.

    Article  PubMed  Google Scholar 

  10. Edeline J, et al. Comparison of tumor response by Response Evaluation Criteria in Solid Tumors (RECIST) and modified RECIST in patients treated with sorafenib for hepatocellular carcinoma. Cancer. 2012;118:147–56.

    Article  CAS  PubMed  Google Scholar 

  11. Llovet JM, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng AL, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    Article  CAS  PubMed  Google Scholar 

  13. International Working Party. Terminology of nodular hepatocellular lesions. Hepatology. 1995;22:983–93.

    Google Scholar 

  14. Hayashi M, et al. Correlation between the blood supply and grade of malignancy of hepatocellular nodules associated with liver cirrhosis: evaluation by CT during intraarterial injection of contrast medium. AJR Am J Roentgenol. 1999;172:969–76.

    Article  CAS  PubMed  Google Scholar 

  15. Ueda K, et al. Vascular supply in adenomatous hyperplasia of the liver and hepatocellular carcinoma: a morphometric study. Hum Pathol. 1992;23:619–26.

    Article  CAS  PubMed  Google Scholar 

  16. Iavarone M, et al. Diagnosis of hepatocellular carcinoma in cirrhosis by dynamic contrast imaging: the importance of tumor cell differentiation. Hepatology. 2010;52:1723–30.

    Article  PubMed  Google Scholar 

  17. European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43.

    Google Scholar 

  18. Forner A, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 2008;47:97–104.

    Article  PubMed  Google Scholar 

  19. Sangiovanni A, et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut. 2010;59:638–44.

    Article  PubMed  Google Scholar 

  20. Yu H, Wilson SR. Differentiation of benign from malignant liver masses with Acoustic Radiation Force Impulse technique. Ultrasound Q. 2011;27:217–23.

    Article  PubMed  Google Scholar 

  21. Shuang-Ming T, et al. Usefulness of acoustic radiation force impulse imaging in the differential diagnosis of benign and malignant liver lesions. Acad Radiol. 2011;18:810–5.

    Article  PubMed  Google Scholar 

  22. Stevens WR, et al. CT findings in hepatocellular carcinoma: correlation of tumor characteristics with causative factors, tumor size, and histologic tumor grade. Radiology. 1994;191:531–7.

    CAS  PubMed  Google Scholar 

  23. Serste T, et al. Accuracy and disagreement of computed tomography and magnetic resonance imaging for the diagnosis of small hepatocellular carcinoma and dysplastic nodules: role of biopsy. Hepatology. 2012;55:800–6.

    Article  PubMed  Google Scholar 

  24. Freeny PC, et al. Hepatocellular carcinoma: reduced frequency of typical findings with dynamic contrast-enhanced CT in a non-Asian population. Radiology. 1992;182:143–8.

    CAS  PubMed  Google Scholar 

  25. Martin J, et al. Fatty metamorphosis of hepatocellular carcinoma: detection with chemical shift gradient-echo MR imaging. Radiology. 1995;195:125–30.

    CAS  PubMed  Google Scholar 

  26. Marrero JA, et al. Improving the prediction of hepatocellular carcinoma in cirrhotic patients with an arterially-enhancing liver mass. Liver Transpl. 2005;11:281–9.

    Article  PubMed  Google Scholar 

  27. Kudo M. Multistep human hepatocarcinogenesis: correlation of imaging with pathology. J Gastroenterol. 2009;44:112–8.

    Article  PubMed  Google Scholar 

  28. Goshima S, et al. Small scirrhous hepatocellular carcinoma with central scar: MR imaging findings. J Magn Reson Imaging. 2002;16:741–5.

    Article  PubMed  Google Scholar 

  29. Ishigami K, et al. Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images: correlation with histopathologic findings. Radiology. 2009;250:435–43.

    Article  PubMed  Google Scholar 

  30. Rimola J, et al. Non-invasive diagnosis of hepatocellular carcinoma </= 2 cm in cirrhosis. Diagnostic accuracy assessing fat, capsule and signal intensity at dynamic MRI. J Hepatol. 2012;56:1317–23.

    Article  PubMed  Google Scholar 

  31. van den Bos IC, et al. Liver imaging at 3.0 T: diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: feasibility study. Radiology. 2008;248:264–71.

    Article  PubMed  Google Scholar 

  32. Zech CJ, et al. Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol. 2008;43:261–6.

    Article  PubMed  Google Scholar 

  33. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254:47–66.

    Article  PubMed  Google Scholar 

  34. Park HJ, et al. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma. Abdom Imaging. 2013;38:793–801.

    Article  PubMed  Google Scholar 

  35. An C, et al. Prediction of the histopathological grade of hepatocellular carcinoma using qualitative diffusion-weighted, dynamic, and hepatobiliary phase MRI. Eur Radiol. 2012;22:1701–8.

    Article  PubMed  Google Scholar 

  36. Nasu K, et al. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. AJR Am J Roentgenol. 2009;193:438–44.

    Article  PubMed  Google Scholar 

  37. Taouli B, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology. 2003;226:71–8.

    Article  PubMed  Google Scholar 

  38. Tsuboyama T, et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging–correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology. 2010;255:824–33.

    Article  PubMed  Google Scholar 

  39. Gschwend S, et al. Pharmacokinetics and imaging properties of Gd-EOB-DTPA in patients with hepatic and renal impairment. Invest Radiol. 2011;46:556–66.

    Article  CAS  PubMed  Google Scholar 

  40. Kanki A, et al. Hepatic parenchymal enhancement at Gd-EOB-DTPA-enhanced MR imaging: correlation with morphological grading of severity in cirrhosis and chronic hepatitis. Magn Reson Imaging. 2012;30:356–60.

    Article  PubMed  Google Scholar 

  41. Motosugi U, et al. Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging. 2009;30:1042–6.

    Article  PubMed  Google Scholar 

  42. Tamada T, et al. Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol. 2011;80:e311–6.

    Article  PubMed  Google Scholar 

  43. Tamada T, et al. Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA. J Magn Reson Imaging. 2009;29:636–40.

    Article  PubMed  Google Scholar 

  44. Motosugi U, et al. Double-dose gadoxetic acid-enhanced magnetic resonance imaging in patients with chronic liver disease. Invest Radiol. 2011;46:141–5.

    Article  CAS  PubMed  Google Scholar 

  45. Tsuda N, Matsui O. Cirrhotic rat liver: reference to transporter activity and morphologic changes in bile canaliculi–gadoxetic acid-enhanced MR imaging. Radiology. 2010;256:767–73.

    Article  PubMed  Google Scholar 

  46. Davenport MS, et al. Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology. 2012.

    Google Scholar 

  47. Haradome H, et al. Can MR fluoroscopic triggering technique and slow rate injection provide appropriate arterial phase images with reducing artifacts on gadoxetic acid-DTPA (Gd-EOB-DTPA)-enhanced hepatic MR imaging? J Magn Reson Imaging. 2010;32:334–40.

    Article  PubMed  Google Scholar 

  48. Venkatesh SK, et al. MR elastography of liver tumors: preliminary results. AJR Am J Roentgenol. 2008;190:1534–40.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Vilana R, et al. Intrahepatic peripheral cholangiocarcinoma in cirrhosis patients may display a vascular pattern similar to hepatocellular carcinoma on contrast-enhanced ultrasound. Hepatology. 2010;51:2020–9.

    Article  PubMed  Google Scholar 

  50. Chen LD, et al. Intrahepatic cholangiocarcinoma and hepatocellular carcinoma: differential diagnosis with contrast-enhanced ultrasound. Eur Radiol. 2010;20:743–53.

    Article  CAS  PubMed  Google Scholar 

  51. Park MS, et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology. 2012;56:140–8.

    Article  PubMed  Google Scholar 

  52. Piana G, et al. New MR imaging criteria with a diffusion-weighted sequence for the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Hepatol. 2011;55:126–32.

    Article  PubMed  Google Scholar 

  53. Kang Y, et al. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR Images. Radiology. 2012;264:751–60.

    Article  PubMed  Google Scholar 

  54. Granito A, et al. Impact of gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance on the non-invasive diagnosis of small hepatocellular carcinoma: a prospective study. Aliment Pharmacol Ther. 2013;37:355–63.

    Article  CAS  PubMed  Google Scholar 

  55. Golfieri R, et al. Which is the best MRI marker of malignancy for atypical cirrhotic nodules: hypointensity in hepatobiliary phase alone or combined with other features? Classification after Gd-EOB-DTPA administration. J Magn Reson Imaging. 2012;36:648–57.

    Article  PubMed  Google Scholar 

  56. Golfieri R, et al. Contribution of the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to ynamic MRI in the detection of hypovascular small (</= 2 cm) HCC in cirrhosis. Eur Radiol. 2011;21:1233–42.

    Article  PubMed  Google Scholar 

  57. Lee JM, et al. Consensus report of the 4th International Forum for Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid Magnetic Resonance Imaging. Korean J Radiol. 2011;12:403–15.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Kim YK, et al. Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: potential of DW imaging in predicting progression to hypervascular HCC. Radiology. 2012;265:104–14.

    Article  PubMed  Google Scholar 

  59. Ferlay J, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  60. Rimola J, et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology. 2009;50:791–8.

    Article  PubMed  Google Scholar 

  61. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  62. Therasse P, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  63. Bruix J, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol. 2001;35:421–30.

    Article  CAS  PubMed  Google Scholar 

  64. Lu DS, et al. Radiofrequency ablation of hepatocellular carcinoma: treatment success as defined by histologic examination of the explanted liver. Radiology. 2005;234:954–60.

    Article  PubMed  Google Scholar 

  65. Riaz A, et al. Radiologic-pathologic correlation of hepatocellular carcinoma treated with chemoembolization. Cardiovasc Intervent Radiol. 2010;33:1143–52.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.

    Article  CAS  PubMed  Google Scholar 

  67. Lencioni R. New data supporting modified RECIST (mRECIST) for Hepatocellular Carcinoma. Clin Cancer Res. 2013;19:1312–4.

    Google Scholar 

  68. Goshima S, et al. Diffusion-weighted imaging of the liver: optimizing b value for the detection and characterization of benign and malignant hepatic lesions. J Magn Reson Imaging. 2008;28:691–7.

    Article  PubMed  Google Scholar 

  69. Mannelli L, et al. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol. 2009;193:1044–52.

    Article  PubMed  Google Scholar 

  70. Watanabe H, et al. Is gadoxetate disodium-enhanced MRI useful for detecting local recurrence of hepatocellular carcinoma after radiofrequency ablation therapy? AJR Am J Roentgenol. 2012;198:589–95.

    Article  PubMed  Google Scholar 

  71. Llovet JM, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008;100:698–711.

    Article  PubMed  Google Scholar 

  72. Bruix J, et al. Clinical decision making and research in hepatocellular carcinoma: pivotal role of imaging techniques. Hepatology. 2011;54:2238–44.

    Article  PubMed  Google Scholar 

  73. Kambadakone AR, Sahani DV. Body perfusion CT: technique, clinical applications, and advances. Radiol Clin North Am. 2009;47:161–78.

    Article  PubMed  Google Scholar 

  74. Lassau N, et al. Advanced hepatocellular carcinoma: early evaluation of response to bevacizumab therapy at dynamic contrast-enhanced US with quantification – preliminary results. Radiology. 2011;258:291–300.

    Article  PubMed  Google Scholar 

  75. van Laarhoven HW, et al. Method for quantitation of dynamic MRI contrast agent uptake in colorectal liver metastases. J Magn Reson Imaging. 2003;18:315–20.

    Article  PubMed  Google Scholar 

  76. Garcia-Figueiras R, et al. CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol. 2013;200:8–19.

    Article  PubMed  Google Scholar 

  77. Zhu AX, et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol. 2009;27:3027–35.

    Article  CAS  PubMed  Google Scholar 

  78. Schraml C, et al. Diffusion-weighted MRI of advanced hepatocellular carcinoma during sorafenib treatment: initial results. AJR Am J Roentgenol. 2009;193:W301–7.

    Article  PubMed  Google Scholar 

  79. Lewin M, et al. The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: a pilot study. Eur Radiol. 2011;21:281–90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Ayuso MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rimola, J., Ayuso, C. (2014). Hepatocellular Carcinoma. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics