Skip to main content

Linear Osmosis Models for Visual Computing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8081))

Abstract

Osmosis is a transport phenomenon that is omnipresent in nature. It differs from diffusion by the fact that it allows nonconstant steady states. In our paper we lay the foundations of osmosis filtering for visual computing applications. We model filters with osmotic properties by means of linear drift-diffusion processes. They preserve the average grey value and the nonnegativity of the initial image. Most interestingly, however, we show how the nonconstant steady state of an osmosis evolution can be steered by its drift vector field. We interpret this behaviour as a data integration mechanism. In the integrable case, we characterise the steady state as a minimiser of a suitable energy functional. In the nonintegrable case, we can exploit osmosis as a framework to fuse incompatible data in a visually convincing way. Osmotic data fusion differs from gradient domain methods by its intrinsic invariance under multiplicative grey scale changes. The osmosis framework constitutes a novel class of methods that can be taylored to solve various problems in image processing, computer vision, and computer graphics. We demonstrate its versatility by proposing osmosis models for compact image respresentation, shadow removal, and seamless image cloning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borg, F.: What is osmosis? Explanation and understanding of a physical phenomenon. Technical report, Chydenius Institute, Jyväskylä University, Karleby, Finland (2003) arXiv:physics/0305011v1

    Google Scholar 

  2. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    Google Scholar 

  3. Hagenburg, K., Breuß, M., Vogel, O., Weickert, J., Welk, M.: A lattice Boltzmann model for rotationally invariant dithering. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009, Part II. LNCS, vol. 5876, pp. 949–959. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Hagenburg, K., Breuß, M., Weickert, J., Vogel, O.: Novel schemes for hyperbolic PDEs using osmosis filters from visual computing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 532–543. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Illner, R., Neunzert, H.: Relative entropy maximization and directed diffusion equations. Mathematical Methods in the Applied Sciences 16, 545–554 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frankot, R., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(4), 439–451 (1988)

    Article  MATH  Google Scholar 

  7. Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 823–836. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Morel, J.M., Petro, A.B., Sbert, C.: A PDE formalisation of retinex theory. IEEE Transactions on Image Processing 19(11), 2825–2837 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Proc. SIGGRAPH 2002, San Antonio, TX, pp. 249–256 (July 2002)

    Google Scholar 

  10. Pérez, P., Gagnet, M., Blake, A.: Poisson image editing. ACM Transactions on Graphics 22(3), 313–318 (2003)

    Article  Google Scholar 

  11. Georgiev, T.: Covariant derivatives and vision. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 56–69. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Risken, H.: The Fokker–Planck Equation. Springer, New York (1984)

    Book  MATH  Google Scholar 

  13. Sochen, N.A.: Stochastic processes in vision: From Langevin to Beltrami. In: Proc. Eighth International Conference on Computer Vision, Vancouver, Canada, vol. 1, pp. 288–293. IEEE Computer Society Press (July 2001)

    Google Scholar 

  14. Wang, H., Hancock, E.R.: Probabilistic relaxation labelling using the Fokker–Planck equation. Pattern Recognition 41(11), 3393–3411 (2008)

    Article  MATH  Google Scholar 

  15. Vogel, O., Hagenburg, K., Weickert, J., Setzer, S.: A fully discrete theory for linear osmosis filtering. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 368–379. Springer, Heidelberg (2013)

    Google Scholar 

  16. Carlsson, S.: Sketch based coding of grey level images. Signal Processing 15, 57–83 (1988)

    Article  Google Scholar 

  17. Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based compression of cartoon-like images with homogeneous diffusion. Pattern Recognition 44(9), 1859–1873 (2011)

    Article  Google Scholar 

  18. Shor, Y., Lischinski, D.: The shadow meets the mask: Pyramid-based shadow removal. Computer Graphics Forum 22(2), 577–586 (2008)

    Article  Google Scholar 

  19. Salamati, N., Germain, A., Süsstrunk, S.: Removing shadows from images using color and near-infrared. In: Proc. 2011 IEEE International Conference on Image Processing, Brussels, Belgium, pp. 1713–1716 (September 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weickert, J., Hagenburg, K., Breuß, M., Vogel, O. (2013). Linear Osmosis Models for Visual Computing. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40395-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40394-1

  • Online ISBN: 978-3-642-40395-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics