Skip to main content

On the Speed of Constraint Propagation and the Time Complexity of Arc Consistency Testing

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

Abstract

Establishing arc consistency on two relational structures is one of the most popular heuristics for the constraint satisfaction problem. We aim at determining the time complexity of arc consistency testing. The input structures G and H can be supposed to be connected colored graphs, as the general problem reduces to this particular case. We first observe the upper bound O(e(G)v(H) + v(G)e(H)), which implies the bound O(e(G)e(H)) in terms of the number of edges and the bound O((v(G) + v(H))3) in terms of the number of vertices. We then show that both bounds are tight up to a constant factor as long as an arc consistency algorithm is based on constraint propagation (as all current algorithms are).

Our argument for the lower bounds is based on examples of slow constraint propagation. We measure the speed of constraint propagation observed on a pair G,H by the size of a proof, in a natural combinatorial proof system, that Spoiler wins the existential 2-pebble game on G,H. The proof size is bounded from below by the game length D(G,H), and a crucial ingredient of our analysis is the existence of G,H with D(G,H) = Ω(v(G)v(H)). We find one such example among old benchmark instances for the arc consistency problem and also suggest a new, different construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atserias, A., Bulatov, A.A., Dalmau, V.: On the power of k -consistency. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 279–290. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. J. Comput. Syst. Sci. 74(3), 323–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Berkholz, C.: Lower bounds for existential pebble games and k-consistency tests. In: LICS 2012, pp. 25–34. IEEE Computer Society, Los Alamitos (2012)

    Google Scholar 

  5. Berkholz, C.: On the complexity of finding narrow proofs. In: FOCS 2012, pp. 351–360. IEEE Computer Society, Los Alamitos (2012)

    Google Scholar 

  6. Berkholz, C., Verbitsky, O.: On the speed of constraint propagation and the time complexity of arc consistency testing. E-print: arxiv.org/abs/1303.7077 (2013)

    Google Scholar 

  7. Bessière, C.: Constraint Propagation. In: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    Google Scholar 

  8. Bessière, C., Régin, J.C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc consistency algorithm. Artificial Intelligence 165(2), 165–185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dechter, R., Pearl, J.: A problem simplification approach that generates heuristics for constraint-satisfaction problems. Tech. rep., Cognitive Systems Laboratory, Computer Science Department, University of California, Los Angeles (1985)

    Google Scholar 

  10. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28(1), 57–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction networks. Artificial Intelligence 45(3), 275–286 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kolaitis, P.G., Panttaja, J.: On the complexity of existential pebble games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 314–329. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Kolaitis, P.G., Vardi, M.Y.: On the expressive power of datalog: Tools and a case study. J. Comput. Syst. Sci. 51(1), 110–134 (1995)

    Article  MathSciNet  Google Scholar 

  14. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction. In: Kautz, H.A., Porter, B.W. (eds.) AAAI/IAAI 2000, pp. 175–181. AAAI Press/The MIT Press, California (2000)

    Google Scholar 

  15. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Computer Science Review 5(2), 119–161 (2011)

    Article  Google Scholar 

  17. Mohr, R., Henderson, T.C.: Arc and path consistency revisited. Artificial Intelligence 28(2), 225–233 (1986)

    Article  Google Scholar 

  18. Régin, J.-C.: AC-*: A configurable, generic and adaptive arc consistency algorithm. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 505–519. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Samal, A., Henderson, T.: Parallel consistent labeling algorithms. International Journal of Parallel Programming 16, 341–364 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berkholz, C., Verbitsky, O. (2013). On the Speed of Constraint Propagation and the Time Complexity of Arc Consistency Testing. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics