Skip to main content

First Order Extensions of Residue Classes and Uniform Circuit Complexity

  • Conference paper
Book cover Logic, Language, Information, and Computation (WoLLIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8071))

  • 752 Accesses

Abstract

The first order logic \(\mathcal{R}ing(0,+,*,<)\) for finite residue class rings with order is presented, and extensions of this logic with generalized quantifiers are given. It is shown that this logic and its extensions capture DLOGTIME-uniform circuit complexity classes ranging from AC 0 to TC 0. Separability results are obtained for the hierarchy of these logics when order is not present, and for \(\mathcal{R}ing(0,+,*,<)\) from the unordered version. These separations are obtained using tools from class field theory, adapting notions as the spectra of polynomials over finite fields to sets of sentences in this logic of finite rings, and studying asymptotic measures of these sets such as their relative densities. This framework of finite rings with order provides new algebraic tools and a novel perspective for descriptive complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ax, J.: Solving diophantine problems modulo every prime. Ann. of Math. 85(2), 161–183 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ax, J.: The elementary theory of finite fields. Ann. of Math. 88(2), 239–271 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrington, D., Immerman, N., Straubing, H.: On uniformity within NC1. J. Computer and Syst. Sci. 41, 274–306 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boppana, R., Sipser, M.: The complexity of finite functions. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Algorithms and Complexity, vol. A, pp. 757–804. Elsevier (1990)

    Google Scholar 

  5. Borodin, A.: On relating time and space to size and depth. SIAM J. Comput. 6(4), 733–744 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer (1995)

    Google Scholar 

  7. Friedlander, J., Iwaniec, H.: Using a parity-sensitive sieve to count prime values of a polynomial. Proc. Natl. Acad. Sci. USA 94, 1054–1058 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Immerman, N.: Descriptive Complexity. Springer (1998)

    Google Scholar 

  9. Gerst, I., Brillhart, J.: On the prime divisors of polynomials. American Math. Monthly 78(3), 250–266 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lagarias, J.C.: Sets of primes determined by systems of polynomial congruences. Illinois J. Math. 27(2), 224–239 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Wyman, B.F.: What is a Reciprocity Law? American Math. Monthly 79(6), 571–586 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arratia, A., Ortiz, C.E. (2013). First Order Extensions of Residue Classes and Uniform Circuit Complexity. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2013. Lecture Notes in Computer Science, vol 8071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39992-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39992-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39991-6

  • Online ISBN: 978-3-642-39992-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics