Skip to main content

Lantibiotics and Similar Peptides Produced by and Active on Gram-Positives: Discovery, Development and Perspectives

  • Chapter
  • First Online:
Antimicrobials
  • 2956 Accesses

Abstract

Lantibiotics are a group of ribosomally synthesised peptides that contain post-translational modifications consisting of (methyl)lanthionine residues forming bridges that confer them characteristic structures. Most lantibiotics are antibacterials that bind to the cell wall precursor lipid II. They can be rod shaped or globular depending on the distribution of the lanthionine residues. Their biosynthetic pathway is relatively simple when compared to other secondary metabolites. Due to this simplicity, genetic manipulation of the pathways is a very attractive tool to obtain variants that might have improved properties. Mutagenesis programmes have shown that the biosynthetic machinery of lantibiotics has relaxed specificity allowing the production of large collections of variants. Lantibiotic gene clusters are a common feature within bacteria, particularly Gram-positive organisms. Genome mining and in vitro synthesis experiments suggest that there is a great potential for discovery of new lantibiotics. With the increasing need for effective antibiotics against multidrug-resistant pathogens, lantibiotics are an attractive option for a new class of molecules. There are two lantibiotics in late preclinical development for use against systemic Gram-positive infections, one lantibiotic in Phase 1 clinical trials for the treatment of Clostridium difficile infections and another lantibiotic in Phase 2b for the treatment of cystic fibrosis. The potential of lantibiotics for the treatment of bacterial infections should become a reality in the next few years with the current compounds going through the corresponding drug development stages and new compounds joining the collection of useful compounds in the fight against multidrug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allgaier H, Jung J, Werner RG, Schneider U, Zahner H (1986) Epidermin: sequencing of a heterodet tetracyclic 21-peptide amide antibiotic. Eur J Biochem 160:9–22

    Article  PubMed  CAS  Google Scholar 

  • Altena K, Guder A, Cramer C, Bierbaum G (2000) Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Env Microbiol 66:2565–2571

    Article  CAS  Google Scholar 

  • Appleyard AN, Ayala T, Boakes S, Cortes J, Dawson MJ, Choi S, Lightfoot A, Read D, Todd M, Wadman SN (2009a) NVB302: a narrow spectrum antibiotic under development for the treatment of Clostridium difficile infection. 49th Interscience conference on antimicrobial agents and chemotherapy, San Francisco, Poster F1-1517

    Google Scholar 

  • Appleyard AN, Candiani G, Carman R, Dawson MJ, Read D, Wadman SN (2009b) NVB302: gastrointestinal stability and in vivo activity in the hamster cecitis model for Clostridium difficile infection. 49th Interscience conference on antimicrobial agents and chemotherapy, San Francisco, Poster F1-1520

    Google Scholar 

  • Appleyard AN, Choi S, Read DM, Lightfoot A, Boakes S, Hoffmann A, Chopra I, Bierbaum G, Rudd BA, Dawson MJ, Cortes J (2009c) Dissecting structural and functional diversity of the lantibiotic mersacidin. Chem Biol 16:490–498

    Article  PubMed  CAS  Google Scholar 

  • Begley M, Cotter PD, Hill C, Ross P (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for Lan M proteins. Appl Environ Microbiol 75:5451–5460

    Article  PubMed  CAS  Google Scholar 

  • Boakes S, Cortes J, Appleyard AN, Rudd BA, Dawson MJ (2009) Organization of the genes encoding the biosynthesis of actagardine and engineering a variant generation system. Mol Microbiol 72:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Boakes S, Appleyard AN, Cortes J, Dawson MJ (2010) Organization of the biosynthetic genes encoding deoxyactagardine B (DAB), a new lantibiotic produced by Actinoplanes liguriae NCIMB41362. J Antibiot 63:351–358

    Article  PubMed  CAS  Google Scholar 

  • Brötz H, Bierbaum G, Leopold K, Reynolds P, Sahl HG (1998a) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    PubMed  Google Scholar 

  • Brötz H, Josten M, Wiedemann I, Schneider U, Götz F, Bierbaum G, Sahl HG (1998b) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327

    Article  PubMed  Google Scholar 

  • Castiglione F, Cavaletti L, Losi D, Lazzarini A, Carrano L, Feroggio M, Ciciliato I, Corti E, Candiani G, Marinelli F, Selva E (2007) A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp. Biochemistry 46:884–895

    Article  Google Scholar 

  • Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I, Gastaldo L, Candiani P, Losi D, Marinelli F, Selva E, Parenti F (2008) Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 15:22–31

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee C, Paul M, Xie L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–684

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Chatterjee S, Lad SJ, Phansalkar MS, Rupp BN, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot 45:832–838

    Article  PubMed  CAS  Google Scholar 

  • Cotter PD, Deegan LH, Lawton EM, Draper LA, O’Connor PM, Hill C, Ross RP (2006) Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Mol Microbiol 62:735–747

    Article  PubMed  CAS  Google Scholar 

  • Dawson MJ (2006) The lantibiotics: an underexploited class of natural products with broad potential. Chem Today 24:25–27

    Google Scholar 

  • Dawson MJ, Appleyard AN, Cortes-Bargallo J, Wadman SN (2011) Actagardine derivatives and pharmaceutical use thereof. WO 2011/095769

    Google Scholar 

  • Delves-Broughton J (1990) Nisin and its uses as a food preservative. Food Technol 44:100–117

    CAS  Google Scholar 

  • Dodd H, Gasson MJ, Mayer M, Narbad A (2006) Identifying lantibiotic gene clusters and novel lantibiotic genes. WO 2006/111743

    Google Scholar 

  • Driessen AJ, van den Hooven HW, Kuiper W, van de Kamp M, Sahl HG, Konings RN, Konings WN (1995) Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry 34:1606–1614

    Article  PubMed  CAS  Google Scholar 

  • Field D, Collins B, Cotter PD, Hill C, Ross RP (2007) A system for the random mutagenesis of the two-peptide lantibiotic lacticin 3147: analysis of mutants producing reduced antibacterial activities. J Mol Microbiol Biotechnol 13:226–234

    Article  PubMed  CAS  Google Scholar 

  • Field D, Connor PM, Cotter PD, Hill C, Ross RP (2008) The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol Microbiol 69(1):218–230

    Article  PubMed  CAS  Google Scholar 

  • Foulston LC, Bibb MJ (2010) Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci USA 107:13461–13466

    Article  PubMed  CAS  Google Scholar 

  • Foulston LC, Bibb MJ (2011) Feed-forward regulation of microbisporicin biosynthesis in Microbispora corallina. J Bacteriol 193:3064–3071

    Article  PubMed  CAS  Google Scholar 

  • Ghobrial O, Derendorf H, Hillman JD (2010) Pharmacokinetic and pharmacodynamic evaluation of the lantibiotic MU1140. J Pharm Sci 99:2521–2528

    Google Scholar 

  • Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA (2010) Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 8:e1000339

    Article  PubMed  Google Scholar 

  • Grasemann H, Stehling F, Widmann R, Laliberte TW, Molina L, Döring G, Ratjen F (2007) Inhalation of Moli 1901 in patients with cystic fibrosis. Chest 131:1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Guder A, Schmitter T, Wiedemann I, Sahl HG, Bierbaum G (2002) Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity. Appl Env Microbiol 68:106–113

    Article  CAS  Google Scholar 

  • Helfrich M, Entian KD, Stein T (2007) Structure-function relationships of the lanthionine cyclase SpaC involved in biosynthesis of the Bacillus subtilis peptide antibiotic subtilin. Biochemistry 46:3224–3233

    Article  PubMed  CAS  Google Scholar 

  • Hindré T, Le Pennec JP, Haras D, Dufour A (2004) Regulation of lantibiotic lacticin 481 production at the transcriptional level by acid pH. FEMS Microbiol Lett 231:291–298

    Article  PubMed  Google Scholar 

  • Holtsmark I, Mantzilas D, EijsinkV GH, Brurberg MB (2006) Purification, characterization, and gene sequence of michiganin A, an actagardine-like lantibiotic produced by the tomato pathogen Clavibacter michiganensis subsp. michiganensis. Appl Environ Microbiol 72:5814–5821

    Article  PubMed  CAS  Google Scholar 

  • Hsu SD, Breukink E, Tischenko E, Lutters MAG, de Kruijff B, Kaptein R, Bonvin MJJ, van Nuland NAJ (2004) The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nature Struc Mol Biol 11:963–967

    Article  CAS  Google Scholar 

  • Islam MR, Nishie M, Nagao J, Zendo T, Keller S, Nakayama J, Kohda D, Sahl HG, Sonomoto K (2012) Ring A of Nukacin ISK-1: a lipid II binding motif for type-A(II) lantibiotic. J Am Chem Soc 134:3687–3690

    Article  PubMed  CAS  Google Scholar 

  • Islam MR, Shioya K, Nagao J, Nishie M, Jikuya H, Zendo T, Nakayama J, Sonomoto K (2009) Evaluation of essential and variable residues of nukacin ISK-1 by NNK scanning. Mol Microbiol 72:1438–1447

    Article  PubMed  CAS  Google Scholar 

  • Jabes D, Brunati C, Guglierame P and Donadio S (2009) In vitro antibacterial profile of the new lantibiotic NAI-107. 49th Interscience conference on antimicrobial agents and chemotherapy, San Francisco, Abs F1- 1502

    Google Scholar 

  • Jabes D, Brunati C, Candiani G, Riva S, Romanó G, Donadio S (2011) Efficacy of the new antibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens. Antimicrob Agents Chemother 55:1671–1676

    Article  PubMed  CAS  Google Scholar 

  • Kellner R, Jung G, Josten M, Kaletta C, Entian KD, Sahl HG (1989) Pep5: structure elucidation of a large lantibiotic. Angew Chemie Int Ed English 28(5):616–619

    Article  Google Scholar 

  • Kessler H, Steuernagel S, Gillessen D, Kamiyama T (1987) Complete sequence determination and localisation of one imino and three sulfide bridges of the nonadecapapetide Ro 09–0198 by homonuclear 2D–NMR spectroscopy. The DQF-relayed-NOESY-Experiment. Helv Chim Acta 70:726–741

    Article  CAS  Google Scholar 

  • Kluskens LD, Nelemans SA, Rink R, de Vries L, Meter-Arkema A, Wang Y, Walther T, Kuipers A, Moll GN, Haas M (2009) Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7)analog. J Pharmacol Exper Ther 328:849–854

    Article  CAS  Google Scholar 

  • Kupke T, Stevanovic S, Sahl HG, Gotz F (1992) Purification and characterization of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin. J Bacteriol 174:5354–5361

    PubMed  CAS  Google Scholar 

  • Li B, Yu JP, Brunzelle JS, Moll GN, van der Donk WA, Nair SK (2006) Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311:1464–1467

    Article  PubMed  CAS  Google Scholar 

  • Li B, Sher D, Kelly L, Shi Y, Huang K, Knerr PJ, Joewono I, Rusch D, Chisholm SW, van der Donk WA (2010) Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc Natl Acad Sci U S A 107:10430–10435

    Article  PubMed  CAS  Google Scholar 

  • Lubelski J, Rink R, Khusainova R, Moll GN, Kuipers OP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65:455–476

    Article  PubMed  CAS  Google Scholar 

  • Majer F, Schmid DG, Altena K, Bierbaum G, Kupke T (2002) The flavoprotein MrsD catalyzes the oxidative decarboxylation reaction involved in formation of the peptidoglycan biosynthesis inhibitor mersacidin. J Bacteriol 184:1234–1243

    Article  PubMed  CAS  Google Scholar 

  • Mattick ATR, Hirsch A (1947) Further observations on an inhibitory substance (Nisin) from lactic streptococci. Lancet 253(2):5–8

    Article  Google Scholar 

  • Marsh AJ, O’Sullivan O, Ross RP, Cotter PD, Hill C (2010) In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics 11:679

    Article  PubMed  CAS  Google Scholar 

  • McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285–308

    Article  PubMed  CAS  Google Scholar 

  • McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci USA 103:17243–17248

    Article  PubMed  CAS  Google Scholar 

  • Okesli A, Cooper LE, Fogle EJ, van der Donk WA (2011) Nine post-translational modifications during the biosynthesis of cinnamycin. J Am Chem Soc 133(34):13753–13760

    Article  PubMed  CAS  Google Scholar 

  • O′Sullivan DJ, Lee JH (2009) Lantibiotics and uses thereof. WO2009/058440

    Google Scholar 

  • Paul M, Patton GC, van der Donk WA (2007) Mutants of the zinc ligands of lacticin 481 synthetase retain dehydration activity but have impaired cyclization activity. Biochemistry 46:6268–6276

    Article  PubMed  CAS  Google Scholar 

  • Patton GC, Paul M, Cooper LE, Chatterjee C, van der Donk WA (2008) The importance of the leader sequence for directing lanthionine formation in lacticin 481. Biochemistry 47:7342–7351

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Augustin J, Kupke T, Stevanovic S, Götz F (1993) Regulation of epidermin biosynthetic genes by EpiQ. Mol Microbiol 9:31–39

    Article  PubMed  CAS  Google Scholar 

  • Rink R, Wierenga J, Kuipers A, Kluskens LD, Driessen AJM, Kuipers OP, Moll GN (2007) Dissection and modulation of the four distinct activities of nisin by mutagenesis of rings A and B and by C-terminal truncation. Appl Env Microbiol 73:5809–5816

    Article  CAS  Google Scholar 

  • Rogers LA, Whittier EO (1928) Limiting factors in the lactic fermentation. J Bacteriol 16:211–229

    PubMed  CAS  Google Scholar 

  • Ryan MP, Jack RW, Josten M, Sahl HG, Jung G, Ross RP, Hill C (1999) Extensive post-translational modification, including serine to D-alanine conversion, in the two-component lantibiotic, lacticin 3147. J Biol Chem 274:37544–37550

    Article  PubMed  CAS  Google Scholar 

  • Sahl HG, Bierbaum G (1998) Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria. Ann Rev Microbiol 52:41–79

    Article  CAS  Google Scholar 

  • Schmitz S, Hoffmann A, Szekat C, Rudd B, Bierbaum G (2006) The lantibiotic mersacidin is an autoinducing peptide. Appl Env Microbiol 72:7270–7277

    Article  CAS  Google Scholar 

  • Skaugen M, Nissen–Meyer J, Jung G, Stevanovic S, Sletten K (1994) In vivo conversion of L–serine to d–alanine in a ribosomally synthesized polypeptide. J Biol Chem 269(44):27183–27185

    Google Scholar 

  • Smith L, Hillman JD (2008) Therapeutic potential of type A(I) lantibiotics, a group of cationic peptide antibiotics. Curr Opin Microbiol 11:401–408

    Article  PubMed  CAS  Google Scholar 

  • Wadman SN, Citron DM, Choi S, Cortes J, Goldstein EJC (2009) NVB302: in vitro activity against Clostridium difficile and intestinal strains of anaerobic bacteria. 49th Interscience conference on antimicrobial agents and chemotherapy, San Francisco, abs F1- 1518

    Google Scholar 

  • Widdick DA, Dodd HM, Barraille P, White J, Stein TH, Chater KF, Gasson MJ, Bibb MJ (2003) Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM40005. Proc Natl Acad Sci USA 100:4316–4321

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Miller LM, Chaterjee C, Averin O, Kelleher NL, van der Donk WA (2004) Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303:679–681

    Article  PubMed  CAS  Google Scholar 

  • You YO, van der Donk WA (2007) Mechanistic investigations of the dehydration reaction of lacticin 481synthetase using site directed mutagenesis. Biochemistry 46:5991–6000

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann N, Metzger JW, Jung G (1995) The tetracyclic lantibiotic actagardine 1H-NMR and 13C-NMR assignments and revised primary structure. Eur J Biochem 228:786–797

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Cortes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cortes, J. (2014). Lantibiotics and Similar Peptides Produced by and Active on Gram-Positives: Discovery, Development and Perspectives. In: Marinelli, F., Genilloud, O. (eds) Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39968-8_7

Download citation

Publish with us

Policies and ethics