Skip to main content

Tetracycline Antibiotics and Novel Analogs

  • Chapter
  • First Online:
  • 3062 Accesses

Abstract

Tetracyclines are a class of broad spectrum, orally available antibiotics with activity against a wide range of Gram-positive and Gram-negative pathogens and protozoan parasites. They have been used extensively since their discovery in the late 1940s for human and animal infections given the absence of major side-effects. Tetracyclines are bacteriostatic and inhibit bacterial growth by interfering with protein synthesis. The emergence and wide-spread of microbial resistance, especially due to highly efficient efflux transporters and ribosomal protection mechanisms, have limited their application. Understanding the molecular interaction of tetracyclines with their targets and the resistance mechanisms has clarified their mode of action and set the foundation for the development of the latest third generation of tetracyclines, such as the glycylcyclines and totally synthetic analogs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265

    Article  PubMed  CAS  Google Scholar 

  • Andes DR, Craig W, Odinecs A, In vivo pharmacodynamics of MX-2764/PTK-0796 against various gram-positive and gram-negative bacteria in the thighs of neutropenic and normal mice. In: 46th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 27–30 September 2006, abstract F-1974

    Google Scholar 

  • Arbeit RD, Roberts JA, Forsythe AR et al (2008) Safety and efficacy of PTK 0796: results of the phase 2 study in complicated skin and skin structure infections following IV and oral step down therapy. In 48th interscience conference on antimicrobial agents and chemotherapy (ICAAC), Washington, DC, 24–28 October 2008, abstract L-1515b

    Google Scholar 

  • Ball PR, Shales SW, Chopra I (1980) Plasmid-mediated tetracycline resistance in Eschrichia coli involves increased efflux of the antibiotic. Biochem Biophys Res Commun 93:74–81

    Article  PubMed  CAS  Google Scholar 

  • Bauer G, Berens C, Projan SJ, Hillen W (2004) Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2þ cleavage of 16S rRNA. J Antimicrob Chemother 53:592–599

    Article  PubMed  CAS  Google Scholar 

  • Brodersen DE, Clemons WM, Carter AP, Morgan-warren RJ, Wimberly BT, Ramakrishnan V (2000) The structural basis for the action of the antibiotic tetracycline, pactamycin and hygromycin b on the 30S ribosomal subunit. Cell 103:1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Burdett V (1991) Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. J Biol Chem 266:2872–2877

    PubMed  CAS  Google Scholar 

  • Charest MG, Lerner DR, Meyers AG (2005) Synthesis of 8-9-tetracycline. J Am Chem Soc 127:8292–9293

    Article  PubMed  CAS  Google Scholar 

  • Chopra I, Hawkey PM, Hinton M (1992) Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother 29:245–277

    Article  PubMed  CAS  Google Scholar 

  • Chopra I (1994) Tetracycline analogs whose primary target is not the bacterial ribosome. Antimicrob Agents Chemother 38:637–640

    Article  PubMed  CAS  Google Scholar 

  • Chopra I (2001) Glycylcyclines: third-generation tetracycline antibiotics. Curr Opin Pharmacol 1:464–469

    Article  PubMed  CAS  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    Article  PubMed  CAS  Google Scholar 

  • Clark RB, Hunt DK, He M, Achorn C, Chen CL, Deng Y, Fyfe C, Grossman TH, Hogan PC, O’Brien WJ, Plamondon L, Rönn M, Sutcliffe JA, Zhu Z, Xiao XY (2012) Fluorocyclines. 2. Optimization of the C-9 side-chain for antibacterial activity and oral efficacy. J Med Chem 55:606–622

    Article  PubMed  CAS  Google Scholar 

  • ClinicalTrials.gov. (2012) Study to compare TP-434 and Ertapenem in CA complicated intra-abdominal infections. NCT01265784

    Google Scholar 

  • Connell SR, Tracz DM, Nierhaus KH, Taylor DE (2003) Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47:3675–3681

    Article  PubMed  CAS  Google Scholar 

  • Doan TL, Fung HB, Mehta D, Riska PF (2006) Tigecycline: a glycylcycline antimicrobial agent. Clin Ther 28:1079–1106

    Article  PubMed  CAS  Google Scholar 

  • Duggar BM (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann N Y Acad Sci 51:177–181

    Article  PubMed  CAS  Google Scholar 

  • Epe B, Woolley P, Hornig H (1987) Competition between tetracycline and tRNA at both P and A sites of the ribosome of Escherichia coli. FEBS Lett 213:443–447

    Article  PubMed  CAS  Google Scholar 

  • Finlay AC, Hobby GL et al (1950) Terramycin, a new antibiotic. Science 111(2874):85

    Article  PubMed  CAS  Google Scholar 

  • Garrison MW, Neumiller JJ, Setter SM (2005) Tigecycline: an investigational glycylcycline antimicrobial with activity against resistant Gram-positive organisms. Clin Ther 27:12–22

    Article  PubMed  CAS  Google Scholar 

  • Goldman RA, Hasan T, Hall CC, Strycharz WA, Cooperman BS (1983) Photoincorporation of tetracycline into Escherichia coli ribosomes. Identification of the major proteins photolabeled by native tetracycline and tetracycline photoproducts and implications for the inhibitory action of tetracycline on protein synthesis. Biochemistry 22:359–368

    Article  PubMed  CAS  Google Scholar 

  • Griffin MO, Fricovsky E, Ceballos G, Villarreal F (2010) Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol 299:C539–C548

    Article  PubMed  CAS  Google Scholar 

  • Hash JH, Wishnick M, Miller PA (1964) On the mode of action of the tetracycline antibiotics in Staphylococcus aureus. J Biol Chem 239:2070–2078

    PubMed  CAS  Google Scholar 

  • Karageorgopoulos DE, Kelesidis T, Kelesidis I, Falagas ME (2008) Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections: a review of the scientific evidence. J Antimicrob Chemother 62:45–55

    Article  PubMed  CAS  Google Scholar 

  • Kasbekar N (2006) Tigecycline: a new glycylcycline antimicrobial agent. Am J Health Syst Pharm 63:1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Kraus RL, Pasieczny R, Lariosa-Willingham K, Turner MS, Jiang A, Trauger JW (2005) Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J Neurochem 94:819–827

    Article  PubMed  CAS  Google Scholar 

  • Levy SB, McMurry L (1974) Detection of an inducible membrane protein associated with R-factor-mediated tetracycline resistance. Biochem Biophys Res Commun 56:1060–1068

    Article  PubMed  CAS  Google Scholar 

  • Lomovskaya O, Watkins WJ (2001) Efflux pumps: their role in antibacterial drug discovery. Curr Med Chem 8:1699–1711

    Article  PubMed  CAS  Google Scholar 

  • McCormick JR, Joachim UH, Jensen ER, Johnson S, Sjolander NO (1965) Biosynthesis of the tetracyclines. VII. 4-hydroxy-6-methylpretetramid, an intermediate accumulated by a blocked mutant of Streptomyces aureofaciens. J Am Chem Soc 87:1793–1794

    Article  PubMed  CAS  Google Scholar 

  • McMurry L, Petrucci R, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different resistant determinants in E. coli. Proc Natl Acad Sci U S A 77:3974–3977

    Article  PubMed  CAS  Google Scholar 

  • Miller PA, Saturnelli A, Martin JH, Itscher LA, Bohonos N (1964) A new family of tetracycline precursors. N-demethylanhydrotetracyclines. Biochem Biophys Res Commun 16:285–291

    Article  PubMed  CAS  Google Scholar 

  • Mitscher LA (1978) The chemistry of the tetracycline antibiotics. Marcel Dekker Inc, New York

    Google Scholar 

  • Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–394

    Article  PubMed  CAS  Google Scholar 

  • Muxfeldt H, Hardtmann G, Kathawala F, Vedejs E, Mooberry JB (1968) Tetracyclines. VII. Total synthesis of dl-terramycin. J Am Chem Soc 90:6534–6536

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Miyake K, Endo H, Dairi T, Mizukami T, Katsumata R (2004) Identification and cloning of the gene involved in the final step of chlortetracycline biosynthesis in Streptomyces aureofaciens. Biosci Biotechnol Biochem 68:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Nelson ML (2002) The chemistry and biology of the tetracyclines. In: Annual reports in medicinal chemistry, vol 37. Academic Press, New York

    Google Scholar 

  • Nelson ML, Levy SB (2011) The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32

    Article  PubMed  CAS  Google Scholar 

  • Nikaido H, Thanassi DG (1993) Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother 37:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • Noskin GA (2005) Tigecycline: a new glycylcycline for treatment of serious infections. Clin Infect Dis 41:s303–s314

    Article  PubMed  CAS  Google Scholar 

  • Pankey GA (2005) Tigecycline. J Antimicrob Chemother 56:470–480

    Article  PubMed  CAS  Google Scholar 

  • Petersen PJ, Jacobus NV, Weiss WJ, Sum PE, Testa RT (1999) In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother 43:738–744

    PubMed  CAS  Google Scholar 

  • Peterson LR (2008) A review of tigecycline the first glycylcycline. Int J Antimicrob Agents 32:S215–S222

    Article  PubMed  CAS  Google Scholar 

  • Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H et al (2001) Crystal structure of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20:1829–1839

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen B, Noller HF, Daubresse G, Oliva B, Misulovin Z, Rothstein DM, Ellestad GA, Gluzman Y, Tally FP, Chopra I (1991) Molecular basis of tetracycline action: identification of analogs whose primary target is not the bacterial ribosome. Antimicrob Agents Chemother 35:2306–2311

    Article  PubMed  CAS  Google Scholar 

  • Roberts MC (2003) Tetracycline therapy: update. Clin Infect Dis 36:462–467

    Article  PubMed  CAS  Google Scholar 

  • Ross JI, Eady EA, Cove JH, Cunliffe WJ (1998) 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob Agents Chemother 42:1702–1705

    PubMed  CAS  Google Scholar 

  • Schnappinger D, Hillen W (1996) Tetracyclines: antibiotic action, uptake and resistance mechanisms. Arch Microbiol 165:359–369

    Article  PubMed  CAS  Google Scholar 

  • Semenkov YuP, Makarov EM, Makhno VI, Kirillov SV (1982) Kinetic aspects of tetracycline action on the acceptor (A) site of Escherichia coli ribosomes. FEBS Lett 144:125–129

    Article  PubMed  CAS  Google Scholar 

  • Stein GE, Craig WE (2006) Tigecycline: a critical analysis. Clin Infect Dis 43:518–524

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JA (2011) Antibiotics in development targeting protein synthesis. Ann NY Acad Sci 1:122–152

    Article  Google Scholar 

  • Taylor DE, Chau A (1996) Tetracycline resistance mediated by ribosomal protection. Antimicrob Agents Chemother 40:1–5

    PubMed  CAS  Google Scholar 

  • Tessier PR, Fan HW, Tanaka SK, Nicolau DP (2006) In: 46th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 27–30 September 2006, abstract F-1973

    Google Scholar 

  • World Health Organization (2011) WHO model list of essential medicines. 17th list (http://whqlibdoc.who.int/hq/2011/a95053_eng.pdf)

  • Williams DN (1998) Tetracyclines. In: Gorbach SL, Bartlett JG, Blacklow NR (eds) Infectious diseases, 2nd edn. WB Saunders, Philadelphia

    Google Scholar 

  • Xiao XY, Hunt DK, Zhou J et al (2012) Fluorocyclines. 1. 7-Fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: a potent, broad spectrum antibacterial agent. J Med Chem 55:597–605

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Moore IF, Koteva KP et al (2004) TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 279:52346–52352

    Article  PubMed  CAS  Google Scholar 

  • Zacheri B, Wright GD (2008) Chemical biology of tetracycline antibiotics. Biochem Cell Biol 86:124–136

    Article  Google Scholar 

  • Zarivach R, Bashan A, Schluenzen F, Harms J, Pioletti M, Franceschi F, Yonath A (2002) Initiation and inhibition of protein biosynthesis studies at high resolution. Curr Protein Pept Sci 3:55–65

    Article  PubMed  CAS  Google Scholar 

  • Zhanel GG, Homenuik K, Nichol K, Noreddin A, Vercaigne L, Embil J, Gin A, Karlowsky JA, Hoban DJ (2004) The glycylcyclines: a comparative review with the tetracyclines. Drugs 64:63–88

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Ames BD, Tsai SC, Tang Y (2006) Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol 72:2573–2580

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Watanabe K, Wang CC, Tang Y (2007) Investigation of early tailoring reactions in the oxytetracycline biosynthetic pathway. J Biol Chem 282:25717–25725

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Genilloud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Genilloud, O., Vicente, F. (2014). Tetracycline Antibiotics and Novel Analogs. In: Marinelli, F., Genilloud, O. (eds) Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39968-8_12

Download citation

Publish with us

Policies and ethics