Skip to main content

Estimation of the Lift-to-Drag Ratio Using the Lifting Line Method: Application to a Leading Edge Inflatable Kite

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The use of kites for auxiliary propulsion reduces oil consumption for vessels. But the complexity of the kite numerical simulation induces the development of computationally efficient models based on lifting line theory to evaluate the aerodynamic characteristics of the kite. The presented 3D lifting line model takes into account the three-dimensional shape of the kite and the viscosity of the fluid. The proposed model was applied to a F-one Revolt Leading Edge Inflatable kite to predict its lift-to-drag ratio. Finally, this method is in very good agreement with CFD simulations in the case of a paragliding wing, but needs a much smaller computational effort.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, I. H., Doenhoff, A. E.: Theory of wing sections. Dover Publications (1959)

    Google Scholar 

  • Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009). doi: 10.1016/j.renene. 2008.11.001

    Google Scholar 

  • Baayen, J. H.: Vortexje - An Open-Source Panel Method for Co-Simulation. Submitted (2012). arXiv:1210.6956 [cs.DS]

    Google Scholar 

  • Breukels, J.: An Engineering Methodology for Kite Design. Ph.D. Thesis, Delft University of Technology, 2011. http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf

  • Chatzikonstantinou, T.: Numerical analysis of three-dimensional non rigid wings. AIAA Paper 89-0907. In: Proceedings of the 10th Aerodynamic Decelerator Conference, Cocoa Beach, FL, USA, 18–20 Mar 1989. doi: 10.2514/6.1989-907

  • Dadd, G. M., Hudson, D. A., Shenoi, R. A.: Comparison of two kite force models with experiment. Journal of Aircraft 47(1), 212–224 (2010). doi: 10.2514/1.44738

    Google Scholar 

  • Dadd, G. M., Hudson, D. A., Shenoi, R. A.: Determination of kite forces using threedimensional flight trajectories for ship propulsion. Renewable Energy 36(10), 2667–2678 (2011). doi: 10.1016/j.renene.2011.01.027

    Google Scholar 

  • Drela, M.: Two-dimensional transonic aerodynamic design and analysis using the Euler equations. Ph.D. Thesis, Massachusetts Institute of Technology, 1985

    Google Scholar 

  • Fagiano, L.: Control of tethered airfoils for high-altitude wind energy generation. Ph.D. Thesis, Politecnico di Torino, 2009. http ://lorenzofagiano. altervista. org/docs/PhD_thesis_Fagiano_Final.pdf

    Google Scholar 

  • Gaunaa, M., Paralta Carqueija, P. F., R′ethor′e, P.-E. M., Sørensen, N. N.: A Computationally Efficient Method for Determining the Aerodynamic Performance of Kites for Wind Energy Applications. In: Proceedings of the European Wind Energy Association Conference, Brussels, Belgium, 14–17 Mar 2011. http://windenergyresearch.org/?p=1557

  • Groot, S. G. C. de, Breukels, J., Schmehl, R., Ockels, W. J.: Modeling Kite Flight Dynamics Using a Multibody Reduction Approach. AIAA Journal of Guidance, Control and Dynamics 34(6), 1671–1682 (2011). doi: 10.2514/1.52686

    Google Scholar 

  • Jackson, P. S.: Optimal Loading of a Tension Kite. AIAA journal 43(11), 2273–2278 (2005). doi: 10.2514/1.3543

  • Katz, J., Plotkin, A.: Low-speed aerodynamics. 2nd ed. Cambridge University Press (2001)

    Google Scholar 

  • Leloup, R., Roncin, K., Leroux, J.-B., Bles, G., Jochum, C., Parlier, Y. et al.: Estimation par la m′ethode de ligne portante de l’effet d’un virage sur la finesse: application aux cerfsvolants de traction pour la propulsion auxiliaire des navires. In: Proceedings 13eme Journ′ees de l’Hydrodynamique, Chatou, France, 21–23 Nov 2012. http://website.ec-nantes.fr/actesjh/images/13JH/Articles/Leloup_JH13.pdf

  • Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). doi: 10.2514/3. 48021

    Google Scholar 

  • Maneia, G. M.: Aerodynamic study of airfoils and wings for power kites applications. M.Sc.Thesis, Politecnico di Torino, 2007. http://maneia.com/doc/MasterThesisManeia.pdf

  • Maneia, G., Tribuzi, C., Tordellac, D., Iovieno, M.: Aerodynamics of a rigid curved kite wing. Submitted to Renewable Energy (2013). arXiv:1306.4148v1 [physics.flu-dyn]

    Google Scholar 

  • Naaijen, P., Koster, V.: Performance of auxiliary wind propulsion for merchant ships using a kite. In: Proceedings of the 2nd International Conference on Marine Research and Transportation, pp. 45–53, Naples, Italy, 28–30 June 2007. http://www.icmrt07.unina.it/Proceedings/Papers/c/26.pdf

  • Phillips, W. F., Snyder, D. O.: Modern adaptation of Prandtl’s classic lifting-line theory. Journal of Aircraft 37(4), 662–670 (2000). doi: 10.2514/2.2649

    Google Scholar 

  • Prandtl, L.: Tragfl¨ugeltheorie. I. Mitteilung. Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen, Mathematisch-Physikalische Klasse, 451–477 (1918). http ://resolver.sub.uni-goettingen.de/purl?GDZPPN002505223

    Google Scholar 

  • Sivells, J. C., Neely, R. H.: Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data. NACA Technical Note 1269, Langley Memorial Aeronautical Laboratory, Langley, VA, USA, Apr 1947. http://www.dtic.mil/dtic/tr/fulltext/u2/a801339.pdf

  • Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flow. AIAA Paper 92-0439. In: Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 Jan 1992. doi: 10.2514/6.1992-439

  • Terink, E. J., Breukels, J., Schmehl, R., Ockels, W. J.: Flight Dynamics and Stability of a Tethered Inflatable Kiteplane. AIAA Journal of Aircraft 48(2), 503–513 (2011). doi: 10.2514/1.C031108

    Google Scholar 

  • Wachter, A. de: Deformation and Aerodynamic Performance of a Ram-AirWing. M.Sc.Thesis, Delft University of Technology, 2008

    Google Scholar 

  • Wellicome, J. F., Wilkinson, S.: Ship Propulsive Kites - An Initial Study, University of Southampton, Department of Ship Science, 1984. http://hdl.handle.net/10068/658907

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostia Roncin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leloup, R., Roncin, K., Bles, G., Leroux, JB., Jochum, C., Parlier, Y. (2013). Estimation of the Lift-to-Drag Ratio Using the Lifting Line Method: Application to a Leading Edge Inflatable Kite. In: Ahrens, U., Diehl, M., Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39965-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39965-7_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39964-0

  • Online ISBN: 978-3-642-39965-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics