Skip to main content

Risk Assessment and Diagnostic Criteria of Acute Kidney Injury: The Role of Tubular Damage Markers

  • Chapter
  • First Online:
  • 1004 Accesses

Abstract

Acute kidney injury (AKI) is a frequent complication in hospitalized patients, especially in the older ones, and associated with substantially increased morbidity and mortality. Diagnosis of AKI is frequently delayed, at least in part, resulting from currently used diagnosis parameters basing on renal filtration function such as serum creatinine and urine output. Such delay may be further pronounced in sicker and older patients. Delayed AKI diagnosis may also contribute to no available effective intervention to prevent or successfully treat AKI because at the time of diagnosis of established AKI, irreversible organ damage may already have occurred. The recently published, international, multidisciplinary clinical practice guidelines for AKI has recommended clinicians to carry out careful renal risk assessment and highlighted the importance of such assessment for individual patient management. Accordingly, several acute tubular damage markers (mostly urine proteins) have been subjected to rigorous clinical testing for their ability to estimate renal risk or to early diagnose AKI, including neutrophil gelatinase-associated lipocalin (NGAL), cell cycle arrest-inducing markers, interleukin-18, liver-type fatty acid-binding protein, and kidney injury molecule-1 (KIM-1). Within a few hours after renal insult, such tubular damage markers are detected in urine and plasma which is usually 24–48 h prior to renal functional marker-based AKI diagnosis. Available data from experimental and clinical studies suggests acute tubular markers being valuable for risk assessment and early diagnosis of AKI of diverse etiology. Acute tubular damage biomarkers may guide earlier initiation of nephroprotection, improved fluid management, or withdrawal of nephrotoxins directed at improvement of outcomes in patients developing AKI. The Acute Dialysis Quality Initiative has now recommended the use of such markers of tubular damage for AKI diagnosis complementary to renal function markers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kinsella K, Wan H (2009) U.S. Census Bureau, International Population Reports, P95/09-1. An aging world: 2008. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  2. Chronopoulos A, Cruz DN, Ronco C (2010) Hospital-acquired acute kidney injury in the elderly. Nat Rev Nephrol 6:141–149

    Article  PubMed  Google Scholar 

  3. Ishani A, Xue JL, Himmelfarb J et al (2009) Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 20:223–228

    Article  PubMed  Google Scholar 

  4. Haase M, Story DA, Haase-Fielitz A (2011) Renal injury in the elderly: diagnosis, biomarkers and prevention. Best Pract Res Clin Anaesthesiol 25:401–412

    Article  PubMed  CAS  Google Scholar 

  5. Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34:1913–1917

    Article  PubMed  Google Scholar 

  6. Bucaloiu ID, Kirchner HL, Norfolk ER et al (2012) Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int 81:477–485

    Article  PubMed  Google Scholar 

  7. Ko GJ, Grigoryev DN, Linfert D et al (2010) Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol 298:F1472–F1483

    Article  PubMed  CAS  Google Scholar 

  8. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543

    Article  PubMed  CAS  Google Scholar 

  9. Kramer AA, Postler G, Salhab KF, Mendez C, Carey LC, Rabb H (1999) Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int 55:2362–2367

    Article  PubMed  CAS  Google Scholar 

  10. Feltes CM, Van Eyk J, Rabb H (2008) Distant-organ changes after acute kidney injury. Nephron Physiol 109:80–84

    Article  Google Scholar 

  11. Liu M, Liang Y, Chigurupati S et al (2008) Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol 19:1360–1370

    Article  PubMed  CAS  Google Scholar 

  12. Grams ME, Rabb H (2012) The distant organ effects of acute kidney injury. Kidney Int 81:942–948

    Article  PubMed  Google Scholar 

  13. Thakar CV, Arrigain S, Worley S et al (2005) A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol 16:162–168

    Article  PubMed  Google Scholar 

  14. James MT, Hemmelgarn BR, Wiebe N et al (2010) Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study. Lancet 376:2096–2103

    Article  PubMed  Google Scholar 

  15. Chawla LS (2011) Acute kidney injury leading to chronic kidney disease and long-term outcomes of acute kidney injury: the best opportunity to mitigate acute kidney injury? Contrib Nephrol 174:182–190

    Article  PubMed  Google Scholar 

  16. Fortrie G, Stads S, de Geus HR, Groeneveld AB, Zietse R, Betjes MG (2013) Determinants of renal function at hospital discharge of patients treated with renal replacement therapy in the intensive care unit. J Crit Care 28:126–132

    Article  PubMed  CAS  Google Scholar 

  17. US Renal Data System (2006) USRDS 2006 annual data report. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda

    Google Scholar 

  18. Schmitt R, Coca S, Kanbay M et al (2008) Recovery of kidney function after acute kidney injury in the elderly: a systematic review and meta-analysis. Am J Kidney Dis 52:262–271

    Article  PubMed  Google Scholar 

  19. Siew ED, Peterson JF, Eden SK et al (2012) Outpatient nephrology referral rates after acute kidney injury. J Am Soc Nephrol 23:305–312

    Article  PubMed  CAS  Google Scholar 

  20. Bellomo R, Ronco C, Kellum JA et al (2004) Acute Dialysis Quality Initiative workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212

    Article  PubMed  Google Scholar 

  21. Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31

    Article  PubMed  Google Scholar 

  22. Kidney Disease: Improving Global Outcomes (KDIGO). Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138

    Article  Google Scholar 

  23. Haase M, Kellum JA, Ronco C (2012) Subclinical AKI-an emerging syndrome with important consequences. Nat Rev Nephrol 8:735–739

    Article  PubMed  CAS  Google Scholar 

  24. Pickering JW, Ralib AM, Endre ZH (2013) Combining creatinine and volume kinetics identifies missed cases of acute kidney injury following cardiac arrest. Crit Care 17:R7

    Article  PubMed  Google Scholar 

  25. Payen D, de Pont AC, Sakr Y et al; Sepsis Occurrence in Acutely Ill Patients (SOAP) Investigators (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74

    Google Scholar 

  26. Teixeira C, Garzotto F, Piccinni P et al; for the NEFROlogia e Cura INTensiva (NEFROINT) Investigators (2013) Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care 17:R14

    Google Scholar 

  27. Pradeep A, Rajagopalam S, Kolli HK et al (2010) High volumes of intravenous fluid during cardiac surgery are associated with increased mortality. HSR Proc Intensive Care Cardiovasc Anesth 2:287–296

    PubMed  CAS  Google Scholar 

  28. Prowle JR, Liu YL, Licari E et al (2011) Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care 15:R172

    Article  PubMed  Google Scholar 

  29. Hojs R, Bevc S, Ekart R, Gorenjak M, Puklavec L (2006) Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function. Nephrol Dial Transplant 21:1855–1862

    Article  PubMed  CAS  Google Scholar 

  30. Stevens LA, Coresh J, Schmid CH et al (2008) Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 51:395–406

    Article  PubMed  CAS  Google Scholar 

  31. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  PubMed  CAS  Google Scholar 

  32. Ristikankare A, Pöyhiä R, Kuitunen A et al (2010) Serum cystatin C in elderly cardiac surgery patients. Ann Thorac Surg 89:689–694

    Article  PubMed  Google Scholar 

  33. Herget-Rosenthal S, Marggraf G, Hüsing J et al (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122

    Article  PubMed  CAS  Google Scholar 

  34. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 14:20–29

    Article  Google Scholar 

  35. Peralta CA, Shlipak MG, Judd S, Cushman M, McClellan W, Zakai NA (2011) Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA 14:1545–1552

    Article  Google Scholar 

  36. Delanaye P, Cavalier E, Moranne O, Lutteri L, Krzesinski JM, Bruyère O (2013) Creatinine-or cystatin C-based equations to estimate glomerular filtration in the general population: impact on the epidemiology of chronic kidney disease. BMC Nephrol 14:57

    Article  PubMed  CAS  Google Scholar 

  37. Sarnak MJ, Katz R, Stehman-Breen CO et al (2005) Cystatin C concentration as a risk factor for heart failure in older adults. Ann Intern Med 142:497–505

    Article  PubMed  CAS  Google Scholar 

  38. Shlipak MG, Sarnak MJ, Katz R et al (2005) Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 352:2049–2060

    Article  PubMed  CAS  Google Scholar 

  39. Schaeffner ES, Ebert N, Delanaye P et al (2012) Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 157:471–481

    Article  PubMed  Google Scholar 

  40. Mohamed R, Jayakumar C, Ranganathan PV, Ganapathy V, Ramesh G (2012) Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice. Am J Pathol 181:1991–2002

    Article  PubMed  CAS  Google Scholar 

  41. Yang X, Kume S, Tanaka Y et al (2011) GW501516, a PPARδ agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1- NFκB pathway in mice. PLoS One 6:e25271

    Article  PubMed  CAS  Google Scholar 

  42. Hemmelgarn BR, Manns BJ, Lloyd A et al (2010) Relation between kidney function, proteinuria, and adverse outcomes. JAMA 303:423–429

    Article  PubMed  CAS  Google Scholar 

  43. Coca SG, Jammalamadaka D, Sint K et al; Translational Research Investigating Biomarker Endpoints in Acute Kidney Injury Consortium (2012) Preoperative proteinuria predicts acute kidney injury in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 143:495–502

    Google Scholar 

  44. Di Somma S, Magrini L, De Berardinis B et al (2013) Additive value of blood neutrophil gelatinase-associated lipocalin to clinical judgement in acute kidney injury diagnosis and mortality prediction in patients hospitalized from the emergency department. Crit Care 17:R29

    Article  PubMed  Google Scholar 

  45. Haase-Fielitz A, Westphal S, Bellomo R et al (2012) Tubular damage biomarkers linked to inflammation or iron metabolism predict acute kidney injury. TH-PO133, Kidney Week (Congress of the American Society of Nephrology)

    Google Scholar 

  46. Mehta RL, McDonald B, Gabbai F et al (2002) Nephrology consultation in acute renal failure: does timing matter? Am J Med 113:456–461

    Article  PubMed  Google Scholar 

  47. Rivers E, Nguyen B, Havstad S et al; Early Goal-Directed Therapy Collaborative Group (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Google Scholar 

  48. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Google Scholar 

  49. Balasubramanian G, Al-Aly Z, Moiz A et al (2011) Early nephrologist involvement in hospital-acquired acute kidney injury: a pilot study. Am J Kidney Dis 57:228–234

    Article  PubMed  Google Scholar 

  50. Colpaert K, Hoste EA, Steurbaut K et al (2012) Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class. Crit Care Med 40:1164–1170

    Article  PubMed  Google Scholar 

  51. Haase-Fielitz A, Bellomo R, Devarajan P et al (2009) Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery-a prospective cohort study. Crit Care Med 37:553–560

    Article  PubMed  CAS  Google Scholar 

  52. de Geus HR, Bakker J, Lesaffre EM, le Noble JL (2011) Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med 183:907–914

    Article  PubMed  Google Scholar 

  53. Shapiro NI, Trzeciak S, Hollander JE et al (2010) The diagnostic accuracy of plasma neutrophil gelatinase-associated lipocalin in the prediction of acute kidney injury in emergency department patients with suspected sepsis. Ann Emerg Med 56:52–59

    Article  PubMed  Google Scholar 

  54. Makris K, Markou N, Evodia E et al (2009) Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med 47:79–82

    Article  PubMed  CAS  Google Scholar 

  55. Haase M, Devarajan P, Haase-Fielitz A et al (2011) The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 57:1752–1761

    Article  PubMed  CAS  Google Scholar 

  56. Nickolas TL, Schmidt-Ott KM, Canetta P et al (2012) Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol 59:246–255

    Article  PubMed  CAS  Google Scholar 

  57. Kashani K, Al-Khafaji A, Ardiles T et al (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25

    Article  PubMed  Google Scholar 

  58. Waikar SS, Betensky RA, Emerson SC, Bonventre JV (2012) Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol 23:13–21

    Article  PubMed  CAS  Google Scholar 

  59. Vaidya VS, Ozer JS, Dieterle F et al (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 28:478–485

    PubMed  CAS  Google Scholar 

  60. Bennett M, Dent CL, Ma Q et al (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol 3:665–673

    Article  PubMed  Google Scholar 

  61. Koyner JL, Bennett MR, Worcester EM et al (2008) Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int 74:1059–1069

    Article  PubMed  CAS  Google Scholar 

  62. Krawczeski CD, Goldstein SL, Woo JG et al (2011) Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol 58:2301–2309

    Article  PubMed  CAS  Google Scholar 

  63. Nickolas TL, O’Rourke MJ, Yang J et al (2008) Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med 148:810–819

    Article  PubMed  Google Scholar 

  64. Cruz DN, de Cal M, Garzotto F et al (2010) Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med 36:444–451

    Article  PubMed  CAS  Google Scholar 

  65. Krawczeski CD, Woo JG, Wang Y, Bennett MR, Ma Q, Devarajan P (2011) Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr 158:1009–1015

    Article  PubMed  CAS  Google Scholar 

  66. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV (2008) Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 118:1657–1668

    Article  PubMed  CAS  Google Scholar 

  67. Paragas N, Qiu A, Zhang Q et al (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17:216–222

    Article  PubMed  CAS  Google Scholar 

  68. Haase M, McCullough PA, Shaw AD et al (2013) Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol 182:13–29

    PubMed  Google Scholar 

  69. McCullough PA, Bouchard J, Waikar SS et al (2013) Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury: executive summary from the tenth consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol 182:5–12

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Haase MD (MH) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haase, M., Haase-Fielitz, A. (2014). Risk Assessment and Diagnostic Criteria of Acute Kidney Injury: The Role of Tubular Damage Markers. In: Haase, M., Haase-Fielitz, A. (eds) Managing Renal Injury in the Elderly Patient. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39947-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39947-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39946-6

  • Online ISBN: 978-3-642-39947-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics