Skip to main content

Part of the book series: Lecture Notes in Applied Mathematics and Mechanics ((LAMM,volume 1))

  • 4986 Accesses

Abstract

After a brief review on the development of three mathematical models in the history of mechanics, we outline today’s role of parameter identification within the process of model building. On this basis, parameter identification is illustrated as a direct method by hand-fitting for some simple mathematical structures from the early stages of mathematical modeling. The beginning of so called “advanced constitutive modeling” in the sixties of the twentieth century rendered parameter identification as a least-squares problem. For its solution evolution strategies and more efficient optimization algorithms have been introduced by several researchers. After addressing these developments, we will also outline some newer aspects such as inhomogeneous field problems and stochastic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andresen, K., Dannemeyer, S., Friebe, H., Mahnken, R., Ritter, R., Stein, E.: Parameteridentifikation für ein plastisches Stoffgesetz mit FE-Methoden und Rasterverfahren. Der Bauingenieur 71, 21–31 (1996)

    Google Scholar 

  2. Bard, Y.: Nonlinear Parameter Estimation. Academic Press, New York (1974)

    MATH  Google Scholar 

  3. Beck, J.V., Arnold, K.J.: Parameter Estimation in Engineering and Science. Wiley, New York (1977)

    MATH  Google Scholar 

  4. Becker, R., Vexler, B.: Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations. J. Comput. Phys. 206(1), 95–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavendish, H. (1798) Experiments to Determine the Density of the Earth. In: MacKenzie, A.S. (ed.) Scientific Memoirs, vol. 9, pp. 59–105. The Laws of Gravitation, American Book Co (1900)

    Google Scholar 

  6. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, New Jersey (1983)

    MATH  Google Scholar 

  7. Larsson, F., Hansbo, P., Runesson, K.: Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. Int. J. Numer. Meth. Engng. 55(8), 879–894 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lemaitre, J., Chaboche, J.L.: Mechanics of solid Materials. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  9. Luenberger, D.G.: Linear and nonlinear programming, 2nd edn. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  10. Mahnken, R., Stein, E.: The identification of parameters for visco-plastic models via finite-element-methods and gradient-methods. Modelling and Simulation Material Science and Engineering 2(3A), 597–614 (1994)

    Article  Google Scholar 

  11. Mahnken, R., Stein, E.: Parameter identification for finite deformation elasto-plasticity in principal directions. Comp. Meths. Appl. Mech. Eng. 147, 17–39 (1997)

    Article  MATH  Google Scholar 

  12. Mohr, R.: Modellierung des Hochtemperaturverhaltens metallischer Werkstoffe. Dissertation, Report GKSS 99/E/66, GKSS Research Center, Geesthacht (1999)

    Google Scholar 

  13. Neal, B.G.: Structural Theorems and their Applications. Pergamon Press (1964)

    Google Scholar 

  14. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran. Cambridge University Press (1992)

    Google Scholar 

  15. Quagliarella, D., Vicini, A.: Coupling genetic algorithms and gradient based optimization techniques. In: Quagliarella, D., et al. (eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pp. 289–309. Wiley, Chichester (1997)

    Google Scholar 

  16. Rechenberg, I.: (1971) Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (PhD thesis). Reprinted by Fromman-Holzboog (1973)

    Google Scholar 

  17. Rechenberg, I.: Evolutionsstrategie 1994. Frommann-Holzboog, Stuttgart (1994)

    Google Scholar 

  18. Schwan, S.: Identifikation der Parameter inelastischer Werkstoffmodelle: Statistische Analyse und Versuchsplanung. Shaker Verlag, Aachen (2000)

    Google Scholar 

  19. Nörenberg, N., Mahnken, R.: A stochastic model for parameter identification. Arch. Appl. Mech. (2012), doi:10.1007/s00419-012-0684-7

    Google Scholar 

  20. Schwefel, K.P.: Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Birkhäuser Verlag, Basel (1977)

    MATH  Google Scholar 

  21. Senseny, P.E., Brodsky, N.S., De Vries, K.L.: Parameter Evaluation for a Unified Constitutive Model. Transactions of the ASME: J. Eng. Mat. Tech. 115, 157–162 (1993)

    Article  Google Scholar 

  22. Steck, E.: A Stochastic Model for the Interaction of Plasticity and Creep in Metals. Nuclear Engineering and Design 114, 285–294 (1989)

    Article  Google Scholar 

  23. Steck (ed.): Collaborative Research Centre 319 (SFB 319), Stoffgesetze für das inelastische Verhalten metallischer Werkstoffe, Entwicklung und technische Anwendung, Arbeitsbericht 1991/92/93 (1993)

    Google Scholar 

  24. Strathern, P.: Newton und die Schwerkraft. Fischer Taschenbuch Verlag (1998)

    Google Scholar 

  25. Szabo, I.: Geschichte der mechanischen Prinzipien, 3. Birkhäuser Verlag, Auflage (1987)

    Google Scholar 

  26. Terzaghi, C.: Principles of Soil Mechanics: II-Compressive Strength of Clay (1998); Engineering News-Record 95(20) (1925)

    Google Scholar 

  27. Timoshenko, S.P.: History of Strength of Materials (1983)

    Google Scholar 

  28. Vexler, B.: Adaptive Finite Element Methods for Parameter Identification Problems. Dissertation, University of Heidelberg (2004)

    MATH  Google Scholar 

  29. Wedemeier, T.: Beiträge zur Theorie und Numerik von Materialien mit innerer Reibung am Beispiel des Werkstoffes Beton, Dissertation, University of Hannover (1990)

    Google Scholar 

  30. Widany, K.U., Mahnken, R.: Adaptivity for parameter identification of incompressible hyperelastic materials using stabilized tetrahedral elements. Comput. Methods Appl. Mech. Engrg. 245-246, 117–131 (2012)

    Article  MathSciNet  Google Scholar 

  31. http://en.wikipedia.org/wiki

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Mahnken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahnken, R. (2014). Parameter Identification in Continuum Mechanics: From Hand-Fitting to Stochastic Modelling. In: Stein, E. (eds) The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39905-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39905-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39904-6

  • Online ISBN: 978-3-642-39905-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics