Skip to main content

Telomerase: A Eukaryotic DNA Polymerase Specialized in Telomeric Repeat Synthesis

  • Chapter
  • First Online:
Book cover Nucleic Acid Polymerases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 30))

  • 1814 Accesses

Abstract

Telomerase is an RNA-dependent DNA polymerase (reverse transcriptase) specialized in the synthesis of short DNA repeats onto chromosome ends, a function essential for chromosome stability and cellular immortality in eukaryotes. Unlike conventional polymerases, telomerase is a ribonucleoprotein (RNP) enzyme, minimally composed of the catalytic telomerase reverse transcriptase (TERT) and the telomerase RNA (TR) subunit. While the TERT catalytic core is well conserved and shares several motifs with conventional reverse transcriptases, the TR subunit is highly divergent and has evolved species-specific structural elements essential for telomerase RNP assembly and biogenesis. Telomerase is unique among polymerases, capable of producing a DNA product vastly longer than the RNA template. This unique polymerization reaction relies on repeatedly regenerating and reusing the short TR template during DNA synthesis, producing the characteristic repetitive telomeric DNA sequence. Processive telomeric repeat synthesis is dependent on “template translocation” for template regeneration, a complex mechanism that is only partially understood. Correspondingly, telomerase-specific domains within telomerase TERT-TR core function cooperatively with telomerase accessory proteins to coordinate template translocation during processive telomeric DNA repeat synthesis. Telomerase is thus a fascinating polymerase, singular in function and unrivaled in complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAB:

Cajal body localization

CP2:

Ciliate counterpart

CTE:

C-terminal extension

IFD:

Insertion in fingers domain

LINE-1:

Long interspersed element-1

PLE:

Penelope-like element

RID1:

RNA-interacting domain 1

RNP:

Ribonucleoprotein

RT:

Reverse transcriptase

scaRNA:

Small Cajal body RNA

snoRNA:

Small nucleolar RNA

TASC:

Telomere adaptor sub-complex

TBE:

Template boundary element

TEN:

Telomerase essential N-terminal

TERT:

Telomerase reverse transcriptase

TR:

Telomerase RNA

TRBD:

Telomerase RNA-binding domain

TWJ:

Three-way junction

VSR:

Vertebrate-specific region

References

  • Agrawal A, Dang S, Gabrani R (2012) Recent patents on anti-telomerase cancer therapy. Recent Pat Anticancer Drug Discov 7(1):102–117

    PubMed  CAS  Google Scholar 

  • Armanios M (2009) Syndromes of telomere shortening. Annu Rev Genomics Hum Genet 10:45–61

    PubMed  CAS  Google Scholar 

  • Autexier C, Greider CW (1995) Boundary elements of the Tetrahymena telomerase RNA template and alignment domains. Genes Dev 9(18):2227–2239

    PubMed  CAS  Google Scholar 

  • Berman AJ, Akiyama BM, Stone MD, Cech TR (2011) The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis. Nat Struct Mol Biol 18:1371–1375

    PubMed  CAS  Google Scholar 

  • Blackburn EH, Collins K (2011) Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol 3(5):a003558

    PubMed  Google Scholar 

  • Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120(1):33–53

    PubMed  CAS  Google Scholar 

  • Bley CJ, Qi X, Rand DP, Borges CR, Nelson RW, Chen JJ-L (2011) RNA-protein binding interface in the telomerase ribonucleoprotein. Proc Natl Acad Sci USA 108:20333–20338

    PubMed  CAS  Google Scholar 

  • Bosoy D, Lue NF (2001) Functional analysis of conserved residues in the putative “finger” domain of telomerase reverse transcriptase. J Biol Chem 276(49):46305–46312

    PubMed  CAS  Google Scholar 

  • Box JA, Bunch JT, Zappulla DC, Glynn EF, Baumann P (2008) A flexible template boundary element in the RNA subunit of fission yeast telomerase. J Biol Chem 283(35):24224–24233

    PubMed  CAS  Google Scholar 

  • Brown Y, Abraham M, Pearl S, Kabaha MM, Elboher E, Tzfati Y (2007) A critical three-way junction is conserved in budding yeast and vertebrate telomerase RNAs. Nucleic Acids Res 35:6280–6289

    PubMed  CAS  Google Scholar 

  • Bryan TM, Goodrich KJ, Cech TR (2000a) A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity. J Biol Chem 275(31):24199–24207

    PubMed  CAS  Google Scholar 

  • Bryan TM, Goodrich KJ, Cech TR (2000b) Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase. Mol Cell 6(2):493–499

    PubMed  CAS  Google Scholar 

  • Chen J-L, Greider CW (2003a) Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility. EMBO J 22:304–314

    PubMed  Google Scholar 

  • Chen J-L, Greider CW (2003b) Template boundary definition in mammalian telomerase. Genes Dev 17(22):2747–2752

    PubMed  CAS  Google Scholar 

  • Chen J-L, Greider CW (2004) An emerging consensus for telomerase RNA structure. Proc Natl Acad Sci USA 101:14683–14684

    PubMed  CAS  Google Scholar 

  • Chen J-L, Greider CW (2005) Functional analysis of the pseudoknot structure in human telomerase RNA. Proc Natl Acad Sci USA 102:8080–8085

    PubMed  CAS  Google Scholar 

  • Chen J-L, Blasco MA, Greider CW (2000) Secondary structure of vertebrate telomerase RNA. Cell 100:503–514

    PubMed  CAS  Google Scholar 

  • Chen J-L, Opperman K, Greider C (2002) A critical stem-loop structure in the CR4-CR5 domain of mammalian telomerase RNA. Nucleic Acids Res 30:592–597

    PubMed  CAS  Google Scholar 

  • Collins K (2011) Single-stranded DNA repeat synthesis by telomerase. Curr Opin Chem Biol 15(5):643–648

    PubMed  CAS  Google Scholar 

  • Counter CM, Meyerson M, Eaton EN, Weinberg RA (1997) The catalytic subunit of yeast telomerase. Proc Natl Acad Sci USA 94(17):9202–9207

    PubMed  CAS  Google Scholar 

  • Drosopoulos WC, Prasad VR (2007) The active site residue Valine 867 in human telomerase reverse transcriptase influences nucleotide incorporation and fidelity. Nucleic Acids Res 35(4):1155–1168

    PubMed  CAS  Google Scholar 

  • Drosopoulos WC, Prasad VR (2010) The telomerase-specific T motif is a restrictive determinant of repetitive reverse transcription by human telomerase. Mol Cell Biol 30:447–459

    PubMed  CAS  Google Scholar 

  • Drosopoulos WC, Direnzo R, Prasad VR (2005) Human telomerase RNA template sequence is a determinant of telomere repeat extension rate. J Biol Chem 280:32801–32810

    PubMed  CAS  Google Scholar 

  • Eckert B, Collins K (2012) Roles of the telomerase reverse transcriptase N-terminal domain in the assembly and activity of Tetrahymena telomerase holoenzyme. J Biol Chem 287:12805–12814

    PubMed  CAS  Google Scholar 

  • Egan ED, Collins K (2010) Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo. Mol Cell Biol 30:2775–2786

    PubMed  CAS  Google Scholar 

  • Egan ED, Collins K (2012a) Biogenesis of telomerase ribonucleoproteins. RNA 18(10):1747–1759

    PubMed  CAS  Google Scholar 

  • Egan ED, Collins K (2012b) An enhanced H/ACA RNP assembly mechanism for human telomerase RNA. Mol Cell Biol 32(13):2428–2439

    PubMed  CAS  Google Scholar 

  • Evans SK, Lundblad V (2002) The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance. Genetics 162(3):1101–1115

    PubMed  CAS  Google Scholar 

  • Finger SN, Bryan TM (2008) Multiple DNA-binding sites in Tetrahymena telomerase. Nucleic Acids Res 36:1260–1272

    PubMed  CAS  Google Scholar 

  • Fisher TS, Zakian VA (2005) Ku: a multifunctional protein involved in telomere maintenance. DNA Repair 4:1215–1226

    PubMed  CAS  Google Scholar 

  • Förstemann K, Lingner J (2005) Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Rep 6:361–366

    PubMed  Google Scholar 

  • Fu D, Collins K (2003) Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol Cell 11:1361–1372

    PubMed  CAS  Google Scholar 

  • Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455:633–637

    PubMed  CAS  Google Scholar 

  • Greider CW (1991) Telomerase is processive. Mol Cell Biol 11(9):4572–4580

    PubMed  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    PubMed  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887–898

    PubMed  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337(6205):331–337

    PubMed  CAS  Google Scholar 

  • Harley CB (2002) Telomerase is not an oncogene. Oncogene 21(4):494–502

    PubMed  CAS  Google Scholar 

  • Harrington L, Zhou W, McPhail T, Oulton R, Yeung DS, Mar V, Bass MB, Robinson MO (1997) Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 11(23):3109–3115

    PubMed  CAS  Google Scholar 

  • Hinkley CS, Blasco MA, Funk WD, Feng J, Villeponteau B, Greider CW, Herr W (1998) The mouse telomerase RNA 5'-end lies just upstream of the telomerase template sequence. Nucleic Acids Res. 26: 532–536.

    Google Scholar 

  • Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J Cancer 96:1020–1024

    PubMed  CAS  Google Scholar 

  • Hossain S, Singh S, Lue NF (2002) Functional analysis of the C-terminal extension of telomerase reverse transcriptase. A putative “thumb” domain. J Biol Chem 277:36174–36180

    PubMed  CAS  Google Scholar 

  • Huard S (2003) The C terminus of the human telomerase reverse transcriptase is a determinant of enzyme processivity. Nucleic Acids Res 31:4059–4070

    PubMed  CAS  Google Scholar 

  • Jacobs SA, Podell ER, Cech TR (2006) Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13:218–225

    PubMed  CAS  Google Scholar 

  • Jarstfer MB, Cech TR (2002) Effects of nucleotide analogues on Euplotes aediculatus telomerase processivity: evidence for product-assisted translocation. Biochemistry 41:151–161

    PubMed  CAS  Google Scholar 

  • Kabaha MM, Zhitomirsky B, Schwartz I, Tzfati Y (2008) The 5′ arm of Kluyveromyces lactis telomerase RNA is critical for telomerase function. Mol Cell Biol 28(6):1875–1882

    PubMed  CAS  Google Scholar 

  • Kiss T, Fayet-Lebaron E, Jády BE (2010) Box H/ACA small ribonucleoproteins. Mol Cell 37:597–606

    PubMed  Google Scholar 

  • Kopera HC, Moldovan JB, Morrish TA, Garcia-Perez JL, Moran JV (2011) Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc Natl Acad Sci USA 108(51):20345–20350

    PubMed  CAS  Google Scholar 

  • Lai CK, Mitchell JR, Collins K (2001) RNA binding domain of telomerase reverse transcriptase. Mol Cell Biol 21:990–1000

    PubMed  CAS  Google Scholar 

  • Lai CK, Miller MC, Collins K (2002) Template boundary definition in Tetrahymena telomerase. Genes Dev 16(4):415–420

    PubMed  CAS  Google Scholar 

  • Lai CK, Miller MC, Collins K (2003) Roles for RNA in telomerase nucleotide and repeat addition processivity. Mol Cell 11(6):1673–1683

    PubMed  CAS  Google Scholar 

  • Latrick CM, Cech TR (2010) POT1-TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J 29:924–933

    PubMed  CAS  Google Scholar 

  • Lattmann S, Stadler MB, Vaughn JP, Akman SA, Nagamine Y (2011) The DEAH-box RNA helicase RHAU binds an intramolecular RNA G-quadruplex in TERC and associates with telomerase holoenzyme. Nucleic Acids Res 39(21):9390–9404

    PubMed  CAS  Google Scholar 

  • Li H (2008) Unveiling substrate RNA binding to H/ACA RNPs: one side fits all. Curr Opin Struct Biol 18:78–85

    PubMed  Google Scholar 

  • Lin J, Ly H, Hussain A, Abraham M, Pearl S, Tzfati Y, Parslow TG, Blackburn EH (2004) A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein. Proc Natl Acad Sci USA 101:14713–14718

    PubMed  CAS  Google Scholar 

  • Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567

    PubMed  CAS  Google Scholar 

  • Lue NF, Li Z (2007) Modeling and structure function analysis of the putative anchor site of yeast telomerase. Nucleic Acids Res 35:5213–5222

    PubMed  CAS  Google Scholar 

  • Lue NF, Lin Y-C, Mian IS (2003) A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity. Mol Cell Biol 23:8440–8449

    PubMed  CAS  Google Scholar 

  • Ly H, Blackburn EH, Parslow TG (2003) Comprehensive structure-function analysis of the core domain of human telomerase RNA. Mol Cell Biol 23:6849–6856

    PubMed  CAS  Google Scholar 

  • Mason DX, Goneska E, Greider CW (2003) Stem-loop IV of tetrahymena telomerase RNA stimulates processivity in trans. Mol Cell Biol 23(16):5606–5613

    PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in zea mays. Genetics 26:234–282

    PubMed  CAS  Google Scholar 

  • Miller MC, Liu JK, Collins K (2000) Template definition by Tetrahymena telomerase reverse transcriptase. EMBO J 19:4412–4422

    PubMed  CAS  Google Scholar 

  • Min B, Collins K (2009) An RPA-related sequence-specific DNA-binding subunit of telomerase holoenzyme is required for elongation processivity and telomere maintenance. Mol Cell 36(4):609–619

    PubMed  CAS  Google Scholar 

  • Min B, Collins K (2010) Multiple mechanisms for elongation processivity within the reconstituted tetrahymena telomerase holoenzyme. J Biol Chem 285(22):16434–16443

    PubMed  CAS  Google Scholar 

  • Mitchell JR, Collins K (2000) Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol Cell 6:361–371

    PubMed  CAS  Google Scholar 

  • Mitchell JR, Cheng J, Collins K (1999) A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol 19(1):567–576

    PubMed  CAS  Google Scholar 

  • Mitchell M, Gillis A, Futahashi M, Fujiwara H, Skordalakes E (2010) Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17:513–518

    PubMed  CAS  Google Scholar 

  • Moriarty TJ, Huard S, Dupuis S, Autexier C (2002) Functional multimerization of human telomerase requires an RNA interaction domain in the N terminus of the catalytic subunit. Mol Cell Biol 22:1253–1265

    PubMed  CAS  Google Scholar 

  • Moriarty TJ, Marie-Egyptienne DT, Autexier C (2004) Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer. Mol Cell Biol 24:3720–3733

    PubMed  CAS  Google Scholar 

  • Moriarty TJ, Marie-Egyptienne DT, Autexier C (2005) Regulation of 5′ template usage and incorporation of noncognate nucleotides by human telomerase. RNA 11(9):1448–1460

    PubMed  CAS  Google Scholar 

  • Muller HJ (1938) The remaking of chromosomes. Collecting Net 13(8):181–198

    Google Scholar 

  • Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277: 955–959.

    Google Scholar 

  • Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Nakamura H, Nakanishi T, Ide T, Ishikawa F (1998) Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet 18(1):65–68

    PubMed  CAS  Google Scholar 

  • Nandakumar J, Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14(2):69–82. doi:10.1038/nrm3505

    PubMed  CAS  Google Scholar 

  • Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR (2012) The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492:285–289

    PubMed  CAS  Google Scholar 

  • Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    PubMed  CAS  Google Scholar 

  • Peng Y, Mian IS, Lue NF (2001) Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Mol Cell 7:1201–1211

    PubMed  CAS  Google Scholar 

  • Podlevsky JD, Chen JJ-L (2012) It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 730:3–11

    PubMed  CAS  Google Scholar 

  • Podlevsky JD, Bley CJ, Omana RV, Qi X, Chen JJ-L (2008) The telomerase database. Nucleic Acids Res 36:D339–D343

    PubMed  CAS  Google Scholar 

  • Qi X, Li Y, Honda S, Hoffmann S, Marz M, Mosig A, Podlevsky JD, Stadler PF, Selker EU, Chen JJ-L (2012a) The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Res 41:450–462

    PubMed  Google Scholar 

  • Qi X, Xie M, Brown AF, Bley CJ, Podlevsky JD, Chen JJ-L (2012b) RNA/DNA hybrid binding affinity determines telomerase template-translocation efficiency. EMBO J 31:150–161

    PubMed  CAS  Google Scholar 

  • Qiao F, Cech TR (2008) Triple-helix structure in telomerase RNA contributes to catalysis. Nat Struct Mol Biol 15:634–640

    PubMed  CAS  Google Scholar 

  • Reichow SL, Hamma T, Ferre-D’Amare AR, Varani G (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35(5):1452–1464

    PubMed  CAS  Google Scholar 

  • Robart AR, O’Connor CM, Collins K (2010) Ciliate telomerase RNA loop IV nucleotides promote hierarchical RNP assembly and holoenzyme stability. RNA 16:563–571

    PubMed  CAS  Google Scholar 

  • Romi E, Baran N, Gantman M, Shmoish M, Min B, Collins K, Manor H (2007) High-resolution physical and functional mapping of the template adjacent DNA binding site in catalytically active telomerase. Proc Natl Acad Sci USA 104:8791–8796

    PubMed  CAS  Google Scholar 

  • Rouda S, Skordalakes E (2007) Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 15:1403–1412

    PubMed  CAS  Google Scholar 

  • Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464(7288):520–528

    PubMed  CAS  Google Scholar 

  • Sandhu R, Sanford S, Basu S, Park M, Pandya UM, Li B, Chakrabarti K (2013) A trans-spliced telomerase RNA dictates telomere synthesis in Trypanosoma brucei. Cell Res 23(4):537–551. doi:10.1038/cr.2013.1035

    PubMed  CAS  Google Scholar 

  • Sealey DC, Zheng L, Taboski MA, Cruickshank J, Ikura M, Harrington LA (2010) The N-terminus of hTERT contains a DNA-binding domain and is required for telomerase activity and cellular immortalization. Nucleic Acids Res 38(6):2019–2035

    PubMed  CAS  Google Scholar 

  • Sekaran VG, Soares J, Jarstfer MB (2010) Structures of telomerase subunits provide functional insights. Biochim Biophys Acta 1804:1190–1201

    PubMed  CAS  Google Scholar 

  • Seto AG, Zaug AJ, Sobel SG, Wolin SL, Cech TR (1999) Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401:177–180

    PubMed  CAS  Google Scholar 

  • Seto AG, Livengood AJ, Tzfati Y, Blackburn EH, Cech TR (2002) A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev 16:2800–2812

    PubMed  CAS  Google Scholar 

  • Seto AG, Umansky K, Tzfati Y, Zaug AJ, Blackburn EH, Cech TR (2003) A template-proximal RNA paired element contributes to Saccharomyces cerevisiae telomerase activity. RNA 9(11):1323–1332

    PubMed  CAS  Google Scholar 

  • Sexton AN, Collins K (2011) The 5′ guanosine tracts of human telomerase RNA are recognized by the G-quadruplex binding domain of the RNA helicase DHX36 and function to increase RNA accumulation. Mol Cell Biol 31:736–743

    PubMed  CAS  Google Scholar 

  • Sexton AN, Youmans DT, Collins K (2012) Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J Biol Chem 287(41):34455–34464

    PubMed  CAS  Google Scholar 

  • Shefer K, Brown Y, Gorkovoy V, Nussbaum T, Ulyanov NB, Tzfati Y (2007) A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA. Mol Cell Biol 27:2130–2143

    PubMed  CAS  Google Scholar 

  • Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE (2003) Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 17:2384–2395

    PubMed  CAS  Google Scholar 

  • Szostak JW, Blackburn EH (1982) Cloning yeast telomeres on linear plasmid vectors. Cell 29(1):245–255

    PubMed  CAS  Google Scholar 

  • Tesmer VM, Ford LP, Holt SE, Frank BC, Yi X, Aisner DL, Ouellette M, Shay JW, Wright WE (1999) Two inactive fragments of the integral RNA cooperate to assemble active telomerase with the human protein catalytic subunit (hTERT) in vitro. Mol Cell Biol 19:6207–6216

    PubMed  CAS  Google Scholar 

  • Theimer CA, Blois CA, Feigon J (2005) Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol Cell 17:671–682

    PubMed  CAS  Google Scholar 

  • Theimer CA, Jády BE, Chim N, Richard P, Breece KE, Kiss T, Feigon J (2007) Structural and functional characterization of human telomerase RNA processing and cajal body localization signals. Mol Cell 27:869–881

    PubMed  CAS  Google Scholar 

  • Tzfati Y, Fulton TB, Roy J, Blackburn EH (2000) Template boundary in a yeast telomerase specified by RNA structure. Science 288(5467):863–867

    PubMed  CAS  Google Scholar 

  • Venteicher AS, Artandi SE (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323:644–648

    PubMed  CAS  Google Scholar 

  • Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, Dokal I (2006) Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood 107:2680–2685

    PubMed  CAS  Google Scholar 

  • Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P, Cech TR, Lei M (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–510

    PubMed  CAS  Google Scholar 

  • Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239:197–201

    PubMed  CAS  Google Scholar 

  • Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichtsteiner S, Kim NW, Trager JB et al (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17(4):498–502

    PubMed  CAS  Google Scholar 

  • Wyatt HDM, Lobb DA, Beattie TL (2007) Characterization of physical and functional anchor site interactions in human telomerase. Mol Cell Biol 27:3226–3240

    PubMed  CAS  Google Scholar 

  • Wyatt HDM, West SC, Beattie TL (2010) InTERTpreting telomerase structure and function. Nucleic Acids Res 38:5609–5622

    PubMed  CAS  Google Scholar 

  • Xie M, Podlevsky JD, Qi X, Bley CJ, Chen JJ-L (2010) A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity. Nucleic Acids Res 38:1982–1996

    PubMed  CAS  Google Scholar 

  • Zappulla DC, Goodrich KJ, Cech TR (2005) A miniature yeast telomerase RNA functions in vivo and reconstitutes activity in vitro. Nat Struct Mol Biol 12:1072–1077

    PubMed  CAS  Google Scholar 

  • Zaug AJ, Podell ER, Cech TR (2008) Mutation in TERT separates processivity from anchor-site function. Nat Struct Mol Biol 15:870–872

    PubMed  CAS  Google Scholar 

  • Zhang Q, Kim N-K, Peterson RD, Wang Z, Feigon J (2010) Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA. Proc Natl Acad Sci USA 107:18761–18768

    PubMed  CAS  Google Scholar 

  • Zhang Q, Kim N-K, Feigon J (2011) Telomerase and retrotransposons: reverse transcriptases that shaped genomes special feature Sackler colloquium: architecture of human telomerase RNA. Proc Natl Acad Sci USA 108:20325–20332

    PubMed  CAS  Google Scholar 

  • Zhang Y, Chen LY, Han X, Xie W, Kim H, Yang D, Liu D, Songyang Z (2013) Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment. Proc Natl Acad Sci USA 110:5457–5462. doi:10.1073/pnas.1217733110

    PubMed  CAS  Google Scholar 

  • Zhong FL, Batista LF, Freund A, Pech MF, Venteicher AS, Artandi SE (2012) TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150(3):481–494

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) Grant R01GM094450 to J.J-L.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian J.-L. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, A.F., Podlevsky, J.D., Chen, J.JL. (2014). Telomerase: A Eukaryotic DNA Polymerase Specialized in Telomeric Repeat Synthesis. In: Murakami, K., Trakselis, M. (eds) Nucleic Acid Polymerases. Nucleic Acids and Molecular Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39796-7_9

Download citation

Publish with us

Policies and ethics