Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 690 Accesses

Abstract

Ambient particulate matter affects local/regional air quality, human health and climate change significantly. The carbonaceous fractions like organic carbon (OC) and elemental carbon (EC, sometimes known as black carbon) are of high interest for scientists all over the world. In this section, measured EFs of PM, OC and EC for various solid fuels, and the influences of fuel property and burning conditions were reported. The size distribution of PM, EC/OC ratio in PM and total carbon mass percent in PM were discussed and compared among three fuel types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemistry Cycle, 15, 955–966.

    Article  Google Scholar 

  • Bignal, K. L., Langridge, S., & Zhou, J. L. (2008). Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter form biomass combustion in a wood-fired boiler under varying boiler conditions. Atmospheric Environment, 42, 8863–8871.

    Article  Google Scholar 

  • Bond, T. C., Covert, D. S., Kramlich, J. C., Larson, T. V., & Charlson, R. J. (2002). Primary particle emissions from residential coal burning: Optical properties and size distributions. Journal of Geophysical Research-Atmospheres, 107(D21), 8347. doi: 10.1029/2001JDO00571.

  • Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J., & Klimont, Z. (2004). A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 109, D14203. doi:10.1029/2003JD003697.

    Article  Google Scholar 

  • Bonsang, B., Boissard, C., Lecloarec, M. F., Rudolph, J., & Lacaux, J. P. (1995). Methane, carbon monoxide and light non-methane hydrocarbon emissions from African savanna burning during the FOS/DECAFE experiment. Journal of Atmospheric Chemistry, 22, 149–162.

    Article  Google Scholar 

  • Chang, M. C., Chow, J. C., Watson, J. G., Hopke, P. K., Yi, S. M., & England, G. C. (2004). Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. Journal of the Air and Waste Management Association, 54, 1494–1505.

    Article  Google Scholar 

  • Chen, Y. J., Bi, X. H., Mai, B. X., Sheng, G. Y., & Fu, J. M. (2004). Emission characterization of particulate/gaseous phases and size association for polycyclic aromatic hydrocarbons from residential coal combustion. Fuel, 83, 781–790.

    Article  Google Scholar 

  • Chen, Y. J., Sheng, G. Y., Bi, X. H., Feng, Y. L., Mai, B. X., & Fu, J. M. (2005). Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environmental Science and Technology, 39, 1861–1867.

    Article  Google Scholar 

  • Chen, Y. J., Zhi, G., Feng, Y., Fu, J., Feng, J., Sheng, G., et al. (2006). Measurement of emission factors for primary carbonaceous particles from residential raw-coal combustion in China. Geophysical Research Letter, 33, L20815. doi:10.1029/2006GL026966.

    Article  Google Scholar 

  • Chen, Y., Zhi, G., Feng, Y., Liu, D., Zhang, G., Li, J., et al. (2009). Measurements of black and organic carbon emission factors for household coal combustion in China: Implication for emission reduction. Environmental Science and Technology, 43, 9495–9500.

    Article  Google Scholar 

  • Chomanee, C., Tekasakul, S., Tekasakul, P., Furuuchi, M., & Otani, Y. (2009). Effects of moisture content and burning period on concentration of smoke particles and particle-bound polycyclic aromatic hydrocarbons from rubber wood combustion. Aerosol and Air Quality Research, 9, 404–411.

    Google Scholar 

  • Chow, J.C., Watson, J.G., Lowenthal, D. H., Antony Chen, L.-W., & Motallebi, N. (2011). PM2.5 source profiles for black and organic carbon emission inventories. Atmospheric Environment, 45, 5407–5414.

    Google Scholar 

  • Edwards, R. D., Smith, K. R., Zhang, J., & Ma, Y. (2004). Implications of changes in household stoves and fuel use in China. Energy Policy, 32, 395–411.

    Article  Google Scholar 

  • Fine, P. M., Cass, G. R., & Simoneit, B. R. T. (2001). Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the Northeastern United States. Environmental Science and Technology, 35, 2665–2675.

    Article  Google Scholar 

  • Fine, P. M., Cass, G. R., & Simoneit, B. R. T. (2002). Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the Southern United States. Environmental Science and Technology, 36, 1442–1451.

    Article  Google Scholar 

  • Fine, P. M., Cass, G. R., & Simoneit, B. R. T. (2004a). Chemical characterization of fine particle emissions from fireplace combustion of wood stove combustion of prevalent United States tree species. Environmental Engineering and Science, 21, 705–721.

    Article  Google Scholar 

  • Fine, P. M., Cass, G. R., & Simoneit, B. R. T. (2004b). Chemical characterization of fine particle emissions from fireplace combustion of wood types grown in the Midwestern and Western United States. Environmental Engineering and Science, 21, 387–409.

    Article  Google Scholar 

  • Francois, D., Patrick, B. M., Ulith, E., Sami, M., & Gilles, B. (1989). Atmospheric input of trace metals to the western Mediterranean: Uncertainties in modeling dry deposition from cascade impactor data. Tellus, 41, 362–378.

    Google Scholar 

  • Hays, M. D., Smith, N. D., Kinsey, J., Dong, Y., & Kariher, P. (2003). Polycyclic aromatic hydrocarbon size distributions in aerosols from appliances of residential wood combustion as determined by direct thermal desorption-GC/MS. Journal of Aerosol Science, 34, 1061–1084.

    Article  Google Scholar 

  • Hurst, D. F., Griffith, D. W. T., Carras, J. N., Williams, D. J., & Fraser, P. J. (1994). Measurements of trace gases emitted by Australian savanna fires during the 1990 dry season. Journal of Atmospheric Chemistry, 18, 33–56.

    Article  Google Scholar 

  • Jimenez, J. R., Claiborn, C. S., Dhammapala, R. S., & Simpson, C. D. (2007). Methoxyphenols and levoglucosan ratios in PM2.5 from wheat and Kentucky bluegrass stubble burning in Eastern Washington and Northern Idaho. Environmental Science and Technology, 41, 7824–7829.

    Article  Google Scholar 

  • Ledesma, E. B., Kalish, M. A., Nelson, P. F., Wornat, M. J., & Mackie, J. C. (2000). Formation and fate of PAH during the pyrolusis and fuel rich combustion of coal primary tar. Fuel, 79, 1801–1814.

    Article  Google Scholar 

  • Li, X., Duan, L., Wang, S., Duan, J., Guo, X., Yi, H., et al. (2007). Emission characteristics of particulate matter from rural household biofuel combustion in China. Energy & Fuels, 21, 845–851.

    Article  Google Scholar 

  • Li, X., Wang, S., Duan, L., Hao, J., & Nie, Y. (2009). Carbonaceous aerosol emissions from household biofuel combustion in China. Environmental Science and Technology, 43, 6076–6081.

    Article  Google Scholar 

  • Lighty, J. S., Veranth, J. M., & Sarofim, A. F. (2000). Combustion aerosols: Factors governing their size and composition and implications to human health. Journal of the Air and Waste Management Association, 50, 1565–1618.

    Article  Google Scholar 

  • Maguhn, J., Karg, E., Kettrup, A., & Zimmermann, R. (2003). On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: Effects of dynamic process control measures and emission reduction devices. Environmental Science and Technology, 37, 4761–4770.

    Article  Google Scholar 

  • McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J. C., Collett, J. L, Jr, et al. (2009). Emission of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research, 114, D19210. doi:10.1029/2009JD011836.

    Article  Google Scholar 

  • Mitra, A., Sarofim, A., & Bar-Ziv, E. (1987). The influence of coal type on the evolution of polycyclic aromatic hydrocarbons during coal devolatilization. Aerosol Science and Technology, 6, 261–271.

    Article  Google Scholar 

  • Novakov, T., Andreae, M. O., Gabriel, R., Kirchstetter, T., Mayol-Bracero, O., & Ramanathan, V. (2000). Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels. Geophysical Research Letter, 27, 4061–4064.

    Article  Google Scholar 

  • Parterson, C. C., & Gillette, D. A. (1977). Commonalities in measured size distributions for aerosols having a soil-derived component. Journal of Geophysics Research, 82, 2074–2082.

    Article  Google Scholar 

  • Purvis, C. R., McCrillis, R. C., & Kariher, P. H. (2000). Fine particulate matter (PM) and organic speciation of fireplace emissions. Environmental Science and Technology, 34, 1653–1658.

    Article  Google Scholar 

  • Roden, C. A., Bond, T. C., Conway, S., & Pinel, A. B. O. (2006). Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environmental Science and Technology, 40, 6750–6757.

    Article  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1998). Sources of fine organic aerosol. 9. pine, oak and synthetic log combustion in residential fireplaces. Environmental Science and Technology, 32, 13–22.

    Article  Google Scholar 

  • Sahai, S., Sharma, C., Singh, D. P., Dixit, C. K., Singh, N., Sharma, P., et al. (2007). A study for development of emission factors for trace gases and carbonaceous particulate species from in situ burning of wheat straw in agricultural fields in india. Atmospheric Environment, 41, 9173–9186.

    Article  Google Scholar 

  • Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. T. (2001). Measurement of emissions from air pollution sources 3. C1 through C29 organic compounds from fireplace combustion of wood. Environmental Science and Technology, 33, 1716–1728.

    Article  Google Scholar 

  • Shen, G. F., Yang, Y., Wang, W., Tao, S., Zhu, C., Min, Y., Xue, N., Ding, J., Wang, B., Wang, R., Shen, H., Li, W., Wang, X., Russell, A. (2010) Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environmental Science & Technology, 44, 7157–7162.

    Google Scholar 

  • Shen, G. F., Wei, S., Wei, W., Zhang, Y., Min, Y., Wang, B., Wang, R., Li, W., Shen, H., Huang, Y., Yang, Y., Wang, W., Wang, X., Wang, X., Tao, S. (2012) Emission Factors, Size Distributions and Emission Inventories of Carbonaceous Particulate Matter from Residential Wood Combustion in Rural China. Environmental Science & Technology, 46, 4207–4214.

    Google Scholar 

  • Simoneit, B. R. T. (2002). Biomass burning—A review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 17, 129–162.

    Article  Google Scholar 

  • Venkataraman, C., & Rao, G. U. M. (2001). Emission factors of carbon monoxide and size-resolved aerosols from biofuel combustion. Environmental Science and Technology, 35, 2100–2107.

    Article  Google Scholar 

  • Venkataraman, C., Negi, G., Sardar, S. B., & Rastogi, R. (2002). Size distributions of polycyclic aromatic hydrocarbons in aerosol emissions from biofuel combustion. Journal of Aerosol Science, 33, 503–518.

    Article  Google Scholar 

  • Venkataraman, C., Joshi, P., Sethi, V., Kohli, S., & Ravi, M. R. (2004). Aerosol and carbon monoxide emissions from low temperature combustion in a sawdust packed-bed stove. Aerosol Science and Technology, 38, 50–61.

    Article  Google Scholar 

  • Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A. H., & Friedlander, S. K. (2005). Residential biofuel in South Asia: Carbonaceous aerosol emissions and climate impacts. Science, 307, 1454–1456.

    Article  Google Scholar 

  • Whitby, K. T. (2007). The physical characteristics of sulfur aerosols. Atmospheric Environment, 41, 25–49.

    Article  Google Scholar 

  • Zhang, X., An, Z., Zhang, G., Chen, T., Liu, D., Arimoto, R., et al. (1994). Mass transport, deposition and climate impacts of atmospheric particulate matter in mainland China. Science in China (Series B), 24(11), 1206–1215. (In Chinese).

    Google Scholar 

  • Zhang, J., Smith, K. R., Ma, Y., Ye, S., Jiang, F., Qi, W., et al. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34, 4537–4549.

    Article  Google Scholar 

  • Zhi, G., Chen, Y., Feng, Y., Xiong, S., Li, J., Zhang, G., et al. (2008). Emission characteristics of carbonaceous particles from various residential coal-stoves in China. Environmental Science and Technology, 42, 3310–3315.

    Article  Google Scholar 

  • Zhi, G., Peng, C., Chen, Y., Liu, D., Sheng, G., & Fu, J. (2009). Deployment of coal briquettes and improved stoves: Possibly an option for both environment and climate. Environmental Science and Technology, 43, 5586–5591.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Shen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shen, G. (2014). Carbonaceous Particulate Matter. In: Emission Factors of Carbonaceous Particulate Matter and Polycyclic Aromatic Hydrocarbons from Residential Solid Fuel Combustions. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39762-2_4

Download citation

Publish with us

Policies and ethics