Skip to main content

Modeling and Numerical Simulation of Multi-destination Pedestrian Crowds

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7975))

Included in the following conference series:

Abstract

In this paper we collect two parts of a research project on the pedestrian flow modeling. Rapid growth in the volume of public transport and the need for its reasonable, efficient planning has made the description and modeling of transport and pedestrian behaviors an important research topic in the last twenty years. Comparatively little attention has been paid to the problem of pedestrian crowd behaviors in geometries with multiple destinations: each of the possibly many pedestrians moves to one out of a number of destinations. The objective of the present study is to investigate pedestrian behaviors in such a context. The central problem is the modeling of crossing pedestrian streams. In view of a desirable practical relevance, realistic, i.e. rather complex geometries are studied in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, M.J., Bärwolff, G., Schwandt, H.: A study of step calculations in traffic cellular automaton models. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 747–752 (2010), http://page.math.tu-berlin.de/~chenmin/pub/cbs100709.pdf (an electronic version) (accessed May 16, 2013)

  2. Lämmel, G., Plaue, M.: Getting out of the way: Collision avoiding pedestrian models. In: PED 2012 Conference Proceedings (2012)

    Google Scholar 

  3. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. PNAS 108(17), 6884–6888 (2011)

    Article  Google Scholar 

  4. Predtechenskii, V.M., Milinskii, A.I.: Planning for Foot Traffic Flow in Buildings. Amerind Publishing, New Delhi (1978); Translation of Proekttirovanie Zhdanii s. Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov. Stroiizdat, Moscow (1969)

    Google Scholar 

  5. Weidmann, U.: Transporttechnik der Fußgänger – transporttechnische Eigenschaften des Fußgängerverkehrs (Literaturstudie). Schriftenreihe der IVT 90 (March 1993) (in German)

    Google Scholar 

  6. Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: Empirical results, modeling and applications. Encyclopedia of Complexity and Systems Science, 3142–3176 (2009)

    Google Scholar 

  7. Cristiani, E., Piccoli, B., Tosin, A.: Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In: Bellomo, N., Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, pp. 337–364. Birkhäuser, Boston (2010)

    Chapter  Google Scholar 

  8. Berres, S., Ruiz-Baier, R., Schwandt, H., Tory, E.M.: An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media (NHM) 6 (2011)

    Google Scholar 

  9. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation Research Part B 36, 507–535 (2002)

    Article  Google Scholar 

  10. Huth, F., Bärwolff, G., Schwandt, H.: A macroscopic multiple species pedestrian flow model based on heuristics implemented with finite volumes. In: PED 2012 Conference Proceedings (2012)

    Google Scholar 

  11. Helbing, D., Farkas, I.J., Vicsek, T.: Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84(6), 1240–1243 (2000)

    Article  Google Scholar 

  12. Radzihovsky, L., Clark, N.A.: Comment on “Freezing by heating in a driven mesoscopic system”. Phys. Rev. Lett. 90(18), 189603 (2003)

    Article  Google Scholar 

  13. Huth, F., Bärwolff, G., Schwandt, H.: Some fundamental considerations for the application of macroscopic models in the field of pedestrian crowd simulation. Preprint ID 2012/16 (2012), http://www.math.tu-berlin.de/menue/forschung/veroeffentlichungen/preprints_2012

  14. Huth, F., Bärwolff, G., Schwandt, H.: Fundamental diagrams and multiple pedestrian streams. Preprint ID 2012/17 (2012), http://www.math.tu-berlin.de/menue/forschung/veroeffentlichungen/preprints_2012/

  15. Bärwolff, G., Slawig, T., Schwandt, H.: Modeling of pedestrian flows using hybrid models of euler equations and dynamical systems. In: AIP Conference Proceedings, vol. 936(1), pp. 70–73 (2007)

    Google Scholar 

  16. Henderson, L.F.: The Statistics of Crowd Fluids. Nature 229(5284), 381–383 (1971)

    Article  Google Scholar 

  17. Ahnert, T., Bärwolff, G., Schwandt, H.: A Multispecies Macroscopic Pedestrian Model approximated by a 3d incompressible Flow. In: Proceedings of the 7th International Conference on Information and Management Sciences 2012, Dunhuang/China. Series of Information and Management Sciences, vol. 7, pp. 475–480. California Polytechnic State University Press, Pomona (2012)

    Google Scholar 

  18. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  19. Johansson, A., Helbing, D., Shukla, P.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems (10), 271–288 (2007)

    Google Scholar 

  20. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics (62) (1986)

    Google Scholar 

  21. OpenCFD Ltd: Open\(\nabla\)FOAM: The open source CFD toolbox (2010), http://www.openfoam.com (accessed today)

  22. Plaue, M., Chen, M., Bärwolff, G., Schwandt, H.: Trajectory extraction and density analysis of intersecting pedestrian flows from video recordings. In: Stilla, U., Rottensteiner, F., Mayer, H., Jutzi, B., Butenuth, M. (eds.) PIA 2011. LNCS, vol. 6952, pp. 285–296. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bärwolff, G., Ahnert, T., Chen, M., Huth, F., Plaue, M., Schwandt, H. (2013). Modeling and Numerical Simulation of Multi-destination Pedestrian Crowds. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39640-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39640-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39639-7

  • Online ISBN: 978-3-642-39640-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics