Skip to main content

Multi Reference versus Coupled Cluster ab Initio Calculations for the N2 + N2 Reaction Channels

  • Conference paper
Book cover Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7971))

Included in the following conference series:

Abstract

By making use of a Grid enabled ab initio molecular simulator we have tackled the a priori study of the N2(\({}^1{\Sigma}_g^+\)) + N2(\({}^1{\Sigma}_g^+\)) process. A detailed analysis of the results obtained from high level ab initio (Coupled Cluster) calculation of the electronic structure of N4 for a large number of nuclear geometries has singled out the fact that Coupled Cluster calculations are insufficiently accurate when the internuclear distances of the approaching N2 diatoms are stretched, because in such cases the wavefunction of the N4 system cannot be properly described by a single determinant. For this reason we have carried out Multi Reference calculations (using the same basis set) for a large number of the nuclear geometries considered for the Coupled Cluster study. Then, a 4-atoms global potential energy surface has been worked out for use in dynamics calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nesbitt, D.J., van der Avoird, A.: Rovibrational states of the H2O-H2 complex: An ab initio calculation. J. Chem. Phys. 134, 44314 (2011)

    Article  Google Scholar 

  2. Albertí, M., Faginas Lago, N., Pirani, F.: Benzene water interaction: From gaseous dimers to solvated aggregates. Chem. Phys. 339, 232–239 (2012)

    Article  Google Scholar 

  3. Hinde, R.J.: A six-dimensional H2H2 potential energy surface for bound state spectroscopy. J. Chem. Phys. 128, 154308 (2008)

    Article  Google Scholar 

  4. Ceballos, A., Garcia, E., Rodriguez, A., Laganà, A.: Quasiclassical kinetics of the H2 + H2 reaction and dissociation. J. Chem. Phys. 105(10), 1797–1804 (2001)

    Article  Google Scholar 

  5. Capitelli, M.: Non-equilibrium vibrational kinetics. Springer, Berlin (1986)

    Book  Google Scholar 

  6. Armenise, I., Capitelli, M., Garcia, E., Gorse, C., Laganà, A., Longo, S.: Deactivation dynamics of vibrationally excited nitrogen molecules by nitrogen atoms. Effects on non-equilibrium vibrational distribution and dissociation rates of nitrogen under electrical discharges. Chem. Phys. Lett. 200, 597 (1992)

    Article  Google Scholar 

  7. Knauth, D.C., Andersson, B.G., McCandliss, S.R., Moos, H.W.: The Interstellar N2 Abundance toward HD 124314 from Far-Ultraviolet Observations. Nature 429, 636 (2004)

    Article  Google Scholar 

  8. Raich, J.C., Gillis, N.S.: The anisotropic interaction between nitrogen molecules from solid state data. J. Chem. Phys. 66, 846 (1977)

    Article  Google Scholar 

  9. MacRury, T.B., Steele, W.A., Berne, B.J.: Intermolecular potential models for anisotropic molecules, with applications to N2, CO2, and benzene. J. Chem. Phys. 64, 1288 (1976)

    Article  Google Scholar 

  10. Cheung, P.S.Y., Powles, J.G.: The properties of liquid nitrogen V. Computer simulation with quadrupole interaction. Mol. Phys. 32, 1383 (1976)

    Article  Google Scholar 

  11. Cheung, P.S.Y., Powles, J.G.: The properties of liquid nitrogen. Mol. Phys. 30, 921 (1975)

    Article  Google Scholar 

  12. Evans, D.J.: Transport properties of homonuclear diatomics I. Dilute gases. Mol. Phys. 34, 103 (1977)

    Article  Google Scholar 

  13. Cappelletti, D., Vecchiocattivi, F., Pirani, F., Heck, E.L., Dickinson, A.S.: An Intermolecular potential for Nitrogen from a multi-property analysis. Mol. Phys. 93, 485 (1998)

    Article  Google Scholar 

  14. Aquilanti, V., Bartolomei, M., Cappelletti, D., Caramona-Novillo, E., Pirani, F.: The N2-N2 system: An experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer. J. Chem. Phys. 93, 485 (1998)

    Google Scholar 

  15. Gomez, L., Bussery-Honvault, B., Cauchy, T., Bartolomei, M., Cappelletti, D., Pirani, F.: Global fits of new intermolecular ground state potential energy surfaces for N2-H2 and N2-N2 van der waals dimers. Chem. Phys. Lett. 445, 99–107 (2007)

    Article  Google Scholar 

  16. van der Avoid, A., Wormer, P.E.S., Jansen, A.P.J.: An improved intermolecular potential for nitrogen. J. Chem. Phys. 84, 1629–1635 (1986)

    Article  Google Scholar 

  17. Cappelletti, D., Vecchiocattivi, F., Pirani, F., McCourt, F.R.W.: Glory structure in the N2-N2 total integral scattering cross section. A test for the intermolecular potential energy surface. Chem. Phys. Lett. 248, 237–243 (1996)

    Article  Google Scholar 

  18. Huo, S.W.M., Green, S.: Quantum calculations for rotational energy transfer in nitrogen molecule collisions. J. Chem. Phys. 104, 7572–7589 (1996)

    Article  Google Scholar 

  19. Stallcop, J.R., Partridge, H.: The N2-N2 potential energy surface. Chem. Phys. Lett. 281, 212–220 (1997)

    Article  Google Scholar 

  20. Wada, A., Kanamori, H., Iwata, S.: Ab Initio MO studies of van der waals molecule (N2)2: Potential energy surface and internal motion. J. Chem. Phys. 109, 9434–9438 (1998)

    Article  Google Scholar 

  21. Couronne, O., Ellinger, Y.A.: An ab initio and DFT study of (N2)2 dimers. Chem. Phys. Lett. 306, 71–77 (1999)

    Article  Google Scholar 

  22. Leonhard, K., Deiters, U.K.: Monte Carlo Simulations of Nitrogen Using an Ab Initio Potential. Mol. Phys. 100, 2571–2585 (2002)

    Article  Google Scholar 

  23. Karimi Jafari, M.H., Maghari, A., Shahbazian, S.: An improved ab initio potential energy surface for N2-N2. Chem. Phys. 314, 249–262 (2005)

    Article  Google Scholar 

  24. Laganà, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry Virtual Organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. The European Grid Initiative, http://www.egi.com (last access January 13, 2013)

  26. Laganà, A.: Towards a grid based universal molecular simulator. In: Laganà, A., Lendvay, G. (eds.). Kluwer (2004)

    Google Scholar 

  27. Costantini, A., Gervasi, O., Manuali, C., Faginas Lago, N., Rampino, S., Laganà, A.: COMPCHEM: progress towards gems a grid empowered molecular simulator and beyond. Journal of Grid Computing 8, 571–586 (2010)

    Article  Google Scholar 

  28. Rampino, S., Monari, A., Rossi, E., Evangelisti, S., Laganà, A.: Chem. Phys. 398, 192 (2012)

    Article  Google Scholar 

  29. Laganá, A., Balucani, N., Crocchianti, S., Casavecchia, P., Garcia, E., Saracibar, A.: An extension of the molecular simulator GEMS to calculate the signal of crossed beam experiments. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 453–465. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Verdicchio, M., Pacifici, L., Laganà, A.: Grid enabled high level ab initio electronic structure calculations for the N2 + N2 exchange reaction. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 371–386. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  31. Møller, C., Plesset, M.S.: Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 46, 618 (1934)

    Article  MATH  Google Scholar 

  32. Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  Google Scholar 

  33. Feller, D.: The Role of Databases in Support of Computational Chemistry Calculations. J. Chem. Phys. 17, 1571–1586 (1996)

    Google Scholar 

  34. Schuchardt, K., Didier, B., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., Windus, T.: Basis Set Exchange: A Community Database for Computational Sciences. J. Chem Inf. Model. 47, 1045–1052 (2007)

    Article  Google Scholar 

  35. Piecuch, P., Kucharski, S.A., Kowalski, K., Musial, M.: Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Comput. Phys. Comm. 149, 71–96 (2002)

    Article  Google Scholar 

  36. Bentz, J.L., Olson, R.M., Gordon, M.S., Schmidt, M.W., Kendall, R.A.: Coupled cluster algorithms for networks of shared memory parallel processors. Comput. Phys. Comm. 176, 589–600 (2007)

    Article  MATH  Google Scholar 

  37. Olson, R.M., Bentz, J.L., Kendall, R.A., Schmidt, M.W., Gordon, M.S.: A novel approach to parallel coupled cluster calculations: Combining distributed and shared memory techniques for modern cluster based systems. J. Comput. Theo. Chem. 3, 1312–1328 (2007)

    Article  Google Scholar 

  38. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic structure system. J. Comp. Chem. 14, 1347–1363 (1993)

    Article  Google Scholar 

  39. Gordon, M.S., Schmidt, M.W.: Theory and Applications of Computational Chemistry, the first forty years (2005)

    Google Scholar 

  40. Hay, P.J., Pack, R.T., Martin, R.L.: Electron correlation effects on the N2-N2 interaction. J. Chem. Phys. 81, 1360–1372 (1984)

    Article  Google Scholar 

  41. http://www.cineca.it (last access January 21, 2013)

  42. Sorbie, K.S., Murrell, J.N.: Analytical potentials for triatomic molecules from spectroscopic data. Mol. Phys. 52, 1387 (1975)

    Article  Google Scholar 

  43. Aguado, A., Tablero, C., Paniagua, M.: Global fit of ab initio potential energy surfaces: II.1. tetraatomic systems ABCD. Comput. Phys. Comm. 134, 97 (2001)

    Article  MATH  Google Scholar 

  44. Garcia, E., Saracibar, A., Gomez-Carrasco, S., Laganà, A.: Modelling the global potential energy surface of the N + N2 reaction from ab initio data. Phys. Chem. Chem. Phys. 10, 2552–2558 (2008)

    Article  Google Scholar 

  45. Caridade, P.J.S.B., Galvao, B.R.L., Varandas, A.J.C.: Quasiclassical Trajectory Study of Atom-Exchange and Vibrational Relaxation Processes in Collisions of Atomic and Molecular Nitrogen. J. Phys. Chem. A 114, 6063–6070 (2010)

    Article  Google Scholar 

  46. Baerends, E.J., Ellis, D.E., Ros, P.: Chem. Phys. 2, 41 (1973)

    Article  Google Scholar 

  47. Ziegler, T., Snijders, J.G., Baerends, E.J.: J. Chem. Phys. 74, 1271 (1981)

    Article  Google Scholar 

  48. Hirao, K.: Chem. Phys. Lett. 190, 374 (1992)

    Article  Google Scholar 

  49. Hirao, K.: Int. J. Quant. Chem. S26, 517 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pacifici, L., Verdicchio, M., Laganà, A. (2013). Multi Reference versus Coupled Cluster ab Initio Calculations for the N2 + N2 Reaction Channels. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39637-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39637-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39636-6

  • Online ISBN: 978-3-642-39637-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics