Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1721 Accesses

Abstract

The interest in this chapter is what type of symmetries imposes a given a space closed curve \(\varGamma\subset \mathbb{R}^{3}\) on the shape of a compact cmc surface spanning Γ. In the context of embedded surfaces, this problem may be partially answered using the reflection technique of Alexandrov. With this method we will give conditions whether the symmetries of the boundary are inherited to the surface, in particular, when the boundary is a plane curve. We employ the method of reflection by means of planes orthogonal to the plane containing the boundary, proving that, under some conditions, if the boundary is a circle the surface is rotational. In this context, we also apply the reflection method with planes parallel to the boundary plane obtaining results that prove that the surface is a graph. Finally, we use the Alexandrov method for embedded cmc surfaces whose boundary lies in a sphere and we give conditions that ensure that the surface lies on one side of the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large I–V. Vestn. Leningr. Univ. 11 #19, 5–17 (1956); 12 #7, 15–44, 1957; 13 #7, 14–26, 1958; 13 #13, 27–34, 1958; 13 #19, 5–8, (1958). English transl. in Amer. Math. Soc. Transl. 21, 341–354, 354–388, 389–403, 403–411, 412–416 (1962)

    Google Scholar 

  2. Alexandrov, A.D.: A characteristic property of spheres. Ann. Mat. Pura Appl. 58, 303–315 (1962)

    Article  MathSciNet  Google Scholar 

  3. Alías, L.J., Malacarne, J.M.: Constant scalar curvature hypersurfaces with spherical boundary in Euclidean space. Rev. Mat. Iberoam. 18, 431–442 (2002)

    Article  MATH  Google Scholar 

  4. Brown, R.A., Scriven, L.E.: The shape and stability of rotating liquid drops. Proc. R. Soc. Lond. Ser. A 371, 331–357 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L.A., Friedman, A.: The shape of axisymmetric rotating fluid. J. Funct. Anal. 35, 109–142 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chandrasekhar, S.: The stability of a rotating liquid drop. Proc. R. Soc. Lond. Ser. A 286, 1–26 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choe, J.: Sufficient conditions for constant mean curvature surfaces to be round. Math. Ann. 323, 143–156 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delaunay, C.: Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl. 6, 309–315 (1841)

    Google Scholar 

  9. Earp, R., Rosenberg, H.: Some structure theorems for complete constant mean curvature surfaces with boundary a convex curve. Proc. Am. Math. Soc. 113, 1045–1053 (1991)

    Article  MATH  Google Scholar 

  10. Finn, R.: Equilibrium Capillary Surfaces. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  11. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Greenberg, M., Harper, J.: Algebraic Topology: A First Course. Benjamin-Cummings, Reading (1981)

    MATH  Google Scholar 

  13. Hoffman, D., Rosenberg, H., Spruck, J.: Boundary value problems for surfaces of constant Gauss curvature. Commun. Pure Appl. Math. 45, 1051–1062 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hopf, H.: Differential Geometry in the Large. Lecture Notes in Mathematics, vol. 1000. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  15. Kapouleas, N.: Compact constant mean curvature surfaces in Euclidean three-space. J. Differ. Geom. 33, 683–715 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Koiso, M.: Symmetry of hypersurfaces of constant mean curvature with symmetric boundary. Math. Z. 191, 567–574 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Langbein, D.: Capillary Surfaces: Shape—Stability—Dynamics in Particular Under Weightlessness. Springer, Berlin (2002)

    Book  Google Scholar 

  18. López, R.: Surfaces of constant mean curvature bounded by two planar curves. Ann. Glob. Anal. Geom. 15, 201–210 (1997)

    Article  MATH  Google Scholar 

  19. López, R.: A note on H-surfaces with boundary. J. Geom. 60, 80–84 (1997)

    MathSciNet  MATH  Google Scholar 

  20. López, R.: Surfaces of constant mean curvature with boundary in a sphere. Osaka Math. J. 34, 573–577 (1997)

    MATH  Google Scholar 

  21. López, R.: Stationary rotating surfaces in Euclidean space. Calc. Var. Partial Differ. Equ. 39, 333–359 (2010)

    Article  MATH  Google Scholar 

  22. López, R., Pyo, J.: Constant mean curvature surfaces with boundary on a sphere. Appl. Math. Comp. 220, 316–323 (2013)

    Article  Google Scholar 

  23. McCuan, J.: A generalized height estimate for graphs, Serrin’s corner lemma, and applications to a conjecture of Rosenberg. In: Minimal surfaces, Geometric Analysis and Symplectic Geometry, Baltimore, MD, 1999. Adv. Stud. Pure Math., vol. 34, pp. 201–217. Math. Soc. Japan, Tokyo (2002)

    Google Scholar 

  24. Meeks, W.H. III: Lectures on Plateau’s Problem. Inst. Mat. Pura Apl., Rio de Janeiro (1978)

    Google Scholar 

  25. Meeks, W.H. III: The topology and geometry of embedded surfaces of constant mean curvature. J. Differ. Geom. 27, 539–552 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Nitsche, J.C.C.: A supplement to the condition of J. Douglas. Rend. Circ. Mat. Palermo 13, 192–198 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nitsche, J.C.C.: Lectures on Minimal Surfaces, vol. 1. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  28. Park, S.: Every ring type spanner in a wedge is spherical. Math. Ann. 332, 475–482 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Poincaré, H.: Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Acta Math. 7, 259–380 (1885)

    Article  MathSciNet  Google Scholar 

  30. Pyo, J.: Minimal annuli with constant contact angle along the planar boundaries. Geom. Dedic. 146, 159–164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Riemann, B.: Oeuvres mathématiques, pp. 341–347. Gauthiers-Villars, Paris (1898)

    Google Scholar 

  32. Ross, D.K.: The shape and energy of a revolving liquid mass held together by surface tension. Aust. J. Phys. 21, 823–835 (1968)

    Article  Google Scholar 

  33. Rossman, W.: Minimal surfaces with planar boundary curves. Kyushu J. Math. 52, 209–225 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schoen, R.: Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differ. Geom. 18, 791–809 (1983)

    MathSciNet  MATH  Google Scholar 

  35. Serrin, J.: On surfaces of constant mean curvature which span a given space curve. Math. Z. 112, 77–88 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  36. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shiffman, M.: On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes. Ann. Math. 63, 77–90 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  38. Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish Or Perish, Houston (1979)

    Google Scholar 

  39. Wente, H.C.: The symmetry of sessile and pendant drops. Pac. J. Math. 88, 387–397 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wente, H.C.: The symmetry of rotating fluid bodies. Manuscr. Math. 39, 287–296 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

López, R. (2013). Constant Mean Curvature Embedded Surfaces. In: Constant Mean Curvature Surfaces with Boundary. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39626-7_4

Download citation

Publish with us

Policies and ethics