Skip to main content

Implant Selection

  • Chapter
  • First Online:
Book cover Knee Joint Arthroplasty
  • 2408 Accesses

Abstract

Most of the surgeons would agree that the surgical technique itself is the most important prognostic factor for TKA. However, there may be some flaws in the designs or the materials used in TKA prosthesis which can lead to a poor prognosis and early TKA failure. Even if these prostheses do not have any problem, the operation can be difficult and outcomes can be poor if an inappropriate implant is selected for the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abdel MP, Morrey ME, Jensen MR, et al. Increased long-term survival of posterior cruciate-retaining versus posterior cruciate-stabilizing total knee replacements. J Bone Joint Surg Am. 2011;93-A:2072–8.

    Google Scholar 

  • Aebli N, Krebs J, Schwenke D, et al. Progression of radiolucent lines in cementless twin-bearing low contact-stress knee prostheses: a retrospective study. J Arthroplasty. 2004;19:783–9.

    PubMed  Google Scholar 

  • Aglietti P, Baldini A, Buzzi R, et al. Comparison of mobile-bearing and fixed-bearing total knee arthroplasty: a prospective randomized study. J Arthroplasty. 2005;20:145–53.

    PubMed  Google Scholar 

  • Ahmed A, Tissakht M, Shrivastava S, Chan K. Dynamic stress response of the implant/cement interface: an axisymmetric analysis of a knee. J Orthop Res. 1990;8:435–47.

    PubMed  CAS  Google Scholar 

  • Akizuki S, Takizawa T, Horiuchi H. Fixation of a hydroxyapatite-tricalcium phosphate-coated cementless knee prosthesis. Clinical and radiographic evaluation seven years after surgery. J Bone Joint Surg Br. 2003;85-B:1123–7.

    Google Scholar 

  • Akasaki Y, Matsuda S, Shimoto T, et al. Contact stress analysis of the conforming post-cam mechanism in posterior-stabilized total knee arthroplasty. J Arthroplasty. 2008;23:736–43.

    PubMed  Google Scholar 

  • Anand A, McGlynn F, Jiranek W. Metal hypersensitivity: can it mimic infection? J Arthroplasty. 2009;24:825–8.

    Google Scholar 

  • Argenson JN, Komistek RD, Mahfouz M, et al. A high flexion total knee arthroplasty design replicates healthy knee motion. Clin Orthop. 2004;428:174–9.

    PubMed  Google Scholar 

  • Arola D, Toffel KA, Yang DT. Fatigue of the cement/bone interface: the surface texture of bone and loosening. J Biomed Mater Res. 2005;76:287–97.

    Google Scholar 

  • Banks SA. Understanding knee arthroplasty kinematics: news you can use. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 258–64.

    Google Scholar 

  • Banks SA, Markovich GD, Hodge WA. In vivo kinematics of cruciate-retaining and substituting knee arthroplasties. J Arthroplasty. 1997;12:297–304.

    PubMed  CAS  Google Scholar 

  • Barrack R. Factors influencing polyethylene wear in total joint arthroplasty. Orthopedics. 1998;21:937–40.

    PubMed  CAS  Google Scholar 

  • Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am. 1986;68-A:1041–51.

    Google Scholar 

  • Bassett RW. Results of 1,000 performance knees: cementless versus cemented fixation. J Arthroplasty. 1998;13:409–13.

    PubMed  CAS  Google Scholar 

  • Becker MW, Insall JN, Faris PM. Bilateral total knee arthroplasty. One cruciate retaining and one cruciate substituting. Clin Orthop. 1991;271:122–4.

    Google Scholar 

  • Bellemans J, Carpentier K, Vandenneucker H, et al. The John Insall Award: both morphotype and gender influence the shape of the knee in patients undergoing TKA. Clin Orthop. 2010;468:29–36.

    Google Scholar 

  • Berend ME, Davis PJ, Ritter MA, et al. “Thicker” polyethylene bearings are associated with higher failure rates in primary total knee arthroplasty. J Arthroplasty. 2010;25:17–20.

    PubMed  Google Scholar 

  • Berend ME, Small SR, Ritter MA, et al. Effects of femoral component size on proximal tibial strain with anatomic graduated components total knee arthroplasty. J Arthroplasty. 2010;25:58–63.

    PubMed  Google Scholar 

  • Berger RA, Lyon JH, Jacobs JJ, et al. Problems with cementless total knee arthroplasty at 11 years follow up. Clin Orthop. 2001;392:196–207.

    PubMed  Google Scholar 

  • Berry DJ, Currier JH, Mayor MB, et al. Knee wear measured in retrievals: a polished tray reduces insert wear. Clin Orthop. 2012;470:1860–8.

    PubMed  Google Scholar 

  • Bert JM. Dislocation/subluxation of meniscal bearing elements after New Jersey low-contact stress total knee arthroplasty. Clin Orthop. 1990;254:211–5.

    PubMed  Google Scholar 

  • Bert JM, McShane M. Is it necessary to cement the tibial stem in cemented total knee arthroplasty? Clin Orthop. 1998;356:73–8.

    PubMed  Google Scholar 

  • Bettinson KA, Pinder IM, Morgan CG, et al. All-polyethylene compared with metal-backed tibial components in total knee arthroplasty at ten years. A prospective, randomized controlled trial. J Bone Joint Surg Am. 2009;91-A:1587–94.

    Google Scholar 

  • Bhan S, Malhotra R, Kiran EK, et al. A comparison of fixed-bearing and mobile-bearing total knee arthroplasty at a minimum follow-up of 4.5 years. J Bone Joint Surg Am. 2005;87-A:2290–6.

    Google Scholar 

  • Black J. Biomaterials overview. In: Callaghan JJ, editor. The adult hip. 1st ed. Philadelphia: Lippincott-Raven Publishers; 1998. p. 87–96.

    Google Scholar 

  • Blaha JD. The rationale for a total knee implant that confers anteroposterior stability throughout range of motion. J Arthroplasty. 2004;19 Suppl 1:22–6.

    PubMed  Google Scholar 

  • Blaha JD, Wojty E. Motion and stability of the normal knee. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 227–39.

    Google Scholar 

  • Bloebaum RD, Bachus KN, Jensen JW, et al. Postmortem analysis of consecutively retrieved asymmetric porous-coated tibial components. J Arthroplasty. 1997;12:920–9.

    PubMed  CAS  Google Scholar 

  • Bloebaum RD, Nelson K, Dorr LD, et al. Investigation of early surface delamination observed in retrieved heat-pressed tibial inserts. Clin Orthop. 1991;269:120–7.

    PubMed  Google Scholar 

  • Bobyn JD, Pilliar RM, Cameron HU, et al. The optimum pore size for the fixation of porous surfaced metal implants by the ingrowth of bone. Clin Orthop. 1980;150:263–70.

    PubMed  Google Scholar 

  • Bobyn JK, Jacobs JJ, Tanzer M, et al. The susceptibility of smooth implant surfaces to peri-implant fibrosis and migration of polyethylene wear debris. Clin Orthop. 1995;311:21–39.

    PubMed  Google Scholar 

  • Bonutti PM, Zywiel MG, Rudert LA, et al. Femoral notch stenosis caused by soft tissue impingement in semi- or open-box posterior-stabilized total knee arthroplasty. J Arthroplasty. 2010;25:1061–5.

    PubMed  Google Scholar 

  • Booth RE. Millenium arthroplasty: materials, methods & mechanisms. Orthopedics. 1998;21:929–31.

    PubMed  Google Scholar 

  • Brassard MF, Insall JN, Scuderi GR, et al. Does modularity affect clinical success? A comparison with a minimum 10 year follow up. Clin Orthop. 2001;388:26–32.

    PubMed  Google Scholar 

  • Buechel Sr FF, Buechel Jr FF, Pappas MJ, et al. Twenty-year evaluation of the New Jersey LCS rotating platform knee replacement. J Knee Surg. 2002;15:84–9.

    PubMed  Google Scholar 

  • Callaghan JJ, Lin SS. Posterior cruciate ligament-substituting total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1531–57.

    Google Scholar 

  • Callaghan JJ, O’Rourke MR. Implant options in primary total knee joint replacement. In: Callaghan JJ, editor. The adult knee. 1st ed. Philadelphia: Lippincot Williams & Wilkins; 2003. p. 1059–66.

    Google Scholar 

  • Cameron HU, Hu C, Vyamont D. Hinge total knee replacement revisited. Can J Surg. 1997;40:278–83.

    PubMed  CAS  Google Scholar 

  • Cameron HU, Mills RH, Jackson RW, et al. The structure of polymethylmethacrylate cement. Clin Orthop. 1974;100:287–91.

    PubMed  Google Scholar 

  • Carothers JT, Kim RH, Dennis DA, et al. Mobile-bearing total knee arthroplasty: a meta-analysis. J Arthroplasty. 2011;26:537–42.

    PubMed  Google Scholar 

  • Catani F, Leardini A, Ensini A, et al. The stability of the cemented tibial component of total knee arthroplasty: posterior cruciate-retaining versus posterior-stabilized design. J Arthroplasty. 2004;19:775–82.

    PubMed  Google Scholar 

  • Cho WS, Moon HS, Park SS, et al. The shape and size discrepancy between bone and prosthesis in total knee arthroplasty. J Korean Orthop Assoc. 1998;33:1045–55.

    Google Scholar 

  • Cho WS, Youm YS. Migration of polyethylene fixation screw after total knee arthroplasty. J Arthroplasty. 2009;24:825–9.

    PubMed  Google Scholar 

  • Cho WS, Youm YS, Ahn SC, et al. What have we learned from LCS mobile-bearing knee system? Knee Surg Sports Traumatol Arthrosc. 2010;18:1345–51.

    PubMed  Google Scholar 

  • Clarke HD, Fuchs R, Scuderi GR, et al. The influence of femoral component design in the elimination of patellar clunk in posterior-stabilized total knee arthroplasty. J Arthroplasty. 2006;21:167–71.

    PubMed  Google Scholar 

  • Clarke HD, Hentz JG. Restoration of femoral anatomy in TKA with unisex and gender-specific components. Clin Orthop. 2008;466:2711–6.

    PubMed  Google Scholar 

  • Collier JP, Williams IR, Mayor MB. Retrieval analysis of mobile bearing prosthetic knee devices. In: Hamelynck KJ, editor. LCS mobile bearing knee arthroplasty. 1st ed. Heidelberg: Springer Verlag; 2002. p. 74–80.

    Google Scholar 

  • Collier MB, Engh Jr CA, McAuley JP, et al. Osteolysis after total knee arthroplasty: influence of tibial baseplate surface finish and sterilization of polyethylene insert. Findings at five to ten years postoperatively. J Bone Joint Surg Am. 2005;87-A:2702–8.

    Google Scholar 

  • Conditt MA, Ismaily SK, Alexander JW, et al. Backside wear of modular ultra-high molecular weight polyethylene tibial inserts. J Bone Joint Surg Am. 2004;86-A:1031–7.

    PubMed  Google Scholar 

  • Conditt MA, Noble PC, Bertolusso R, et al. The PCL significantly affects the functional outcome of total knee arthroplasty. J Arthroplasty. 2004;19:107–12.

    PubMed  Google Scholar 

  • Conditt MA, Thompson MT, Usrey MM, et al. Backside wear of polyethylene tibial inserts: mechanism and magnitude of material loss. J Bone Joint Surg Am. 2005;87-A:326–31.

    Google Scholar 

  • Cooke C, Walter WK, Zicat B. Tibial fixation without screws in cementless total knee arthroplasty. J Arthroplasty. 2006;21:237–41.

    PubMed  Google Scholar 

  • Dalury DF, Pomeroy DL, Gonzales RA, et al. Midterm results of all-polyethylene tibial components in primary total knee arthroplasty. J Arthroplasty. 2009;24:620–4.

    PubMed  Google Scholar 

  • Davis JP, Harris WH. Tensile bonding strength of the cement-prosthesis interface. Orthopedics. 1994;17:171–4.

    Google Scholar 

  • Dargel J, Michael JW, Feiser J, et al. Human knee joint anatomy revisited: morphometry in the light of sex-specific total knee arthroplasty. J Arthroplasty. 2011;26:346–53.

    PubMed  Google Scholar 

  • Dennis DA, Komistek RD, Hoff WA, et al. In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop. 1996;331:107.

    PubMed  Google Scholar 

  • Dennis DA, Komistek RD, Mahfouz MR, et al. Mobile-bearing total knee arthroplasty: do the polyethylene bearings rotate? Clin Orthop. 2005;440:88–95.

    PubMed  Google Scholar 

  • D’Lima DD, Chen PC, Colwell CW. Polyethylene contact stresses, articular congruity, and knee alignment. Clin Orthop. 2001;392:232–8.

    PubMed  Google Scholar 

  • Dodd CAF, Hungerford DS, Krackow KA. Total knee arthroplasty fixation: comparison of the early results of paired cemented versus uncemented porous coated anatomic knee prostheses. Clin Orthop. 1990;260:66–70.

    PubMed  Google Scholar 

  • Dorr LD, Ochesner JL, Gronly J, et al. Functional comparison of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty. Clin Orthop. 1988;236:36–43.

    PubMed  Google Scholar 

  • Duffy GP, Berry DJ, Rand JA. Cement versus cementless fixation in total knee arthroplasty. Clin Orthop. 1998;356:66–72.

    PubMed  Google Scholar 

  • Engh CA, Hooten Jr JP, Zettl-Schaffer KF, et al. Evaluation of bone ingrowth in proximally and extensively porous-coated anatomic medullary locking prostheses retrieved at autopsy. J Bone Joint Surg Am. 1995;77-A:903–10.

    Google Scholar 

  • Engh GA, Parks NL, Ammeen DJ. Tibial osteolysis in cementless total knee arthroplasty. A review of 25 cases treated with and without tibial component revision. Clin Orthop. 1994;309:33–43.

    PubMed  Google Scholar 

  • Evans MC, Parsons EM, Scott RD, Thornhill TS, Zurakowski D. Comparative flexion after rotating platform vs Fixed-bearing total knee arthroplasty. J Arthroplasty. 2006;21:985–91.

    PubMed  Google Scholar 

  • Ezzet KA, Hershey AL, D’Lima DD, et al. Patellar tracking in total knee arthroplasty: inset versus onset design. J Arthroplasty. 2001;16:838–43.

    PubMed  CAS  Google Scholar 

  • Ezzet KA, Hermiad JC, Steklov N, et al. Wear of polyethylene against oxidized zirconium femoral componentseffect of aggressive kinematic conditions and malalignment in total knee arthroplasty. J Arthroplasty. 2012;27:116–21.

    PubMed  Google Scholar 

  • Fan CY, Hsieh JT, Hsieh MS, et al. Primitive results after medial-pivot knee arthroplasties: a minimum 5-year follow-up study. J Arthroplasty. 2010;25:492–6.

    PubMed  Google Scholar 

  • Faris PM, Ritter MA, Keating EM, Meding JB, Harty LD. The AGC all-polyethylene tibial component: a ten-year clinical evaluation. J Bone Joint Surg Am. 2003;85-A:489–93.

    PubMed  Google Scholar 

  • Fehring TK, Berend KR, Hofmann S, et al. Advanced technologies in performing total knee arthroplasty: roundtable discussion. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1283–92.

    Google Scholar 

  • Fehring TK, Mason JB. Cemented total knee replacement: the gold standard. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1626–30.

    Google Scholar 

  • Fornasier VL, Cameron HU. The femorall stem/cement interface in total hip replacement. Clin Orthop. 1976;116:248–52.

    PubMed  Google Scholar 

  • Freeman MA, Swanson SA, Todd RC. Total replacement of the knee using the Freeman-Swanson knee prosthesis. Clin Orthop. 1973;94:153.

    PubMed  Google Scholar 

  • Freeman MA, Tennant R. The scientific basis of cement versus cementless fixation. Clin Orthop. 1992;276:19–25.

    PubMed  Google Scholar 

  • Frye BM, Floyd MW, Pham DC, et al. Effect of femoral component design on patellofemoral crepitance and patella clunk syndrome after posterior-stabilized total knee arthroplasty. J Arthroplasty. 2012;27:1166–70.

    PubMed  Google Scholar 

  • Furman BD, Lipman J, Kligman M, et al. Tibial post wear in posterior-stabilized knee replacements is design-dependent. Clin Orthop. 2008;466:2650–5.

    PubMed  Google Scholar 

  • Gilbert JL. Metals. In: Callaghan JJ, editor. The adult hip. 1st ed. Philadelphia: Lippincott-Raven Publishers; 1998. p. 123–34.

    Google Scholar 

  • Greene KA. Gender-specific design in total knee arthroplasty. J Arthroplasty. 2007;22:27–31.

    PubMed  Google Scholar 

  • Haas SS, Brauer GM, Dickson G. A characterization of polymethylmethacrylate bone cement. J Bone Joint Surg Am. 1975;57-A:380–91.

    Google Scholar 

  • Haider H, Weisenberger JN, Kurtz SM, et al. Does vitamin E-stabilized ultrahigh-molecular-weight polyethyelne address concerns cross-linked polyethylene in total knee arhtroplasty? J Arthroplasty. 2012;27:461–9.

    PubMed  Google Scholar 

  • Hamai S, Miura H, Matsuda S, et al. Contact stress at the anterior aspect of the tibial post in posterior-stabilized total knee replacement. J Bone Joint Surg Am. 2010;92-A:1765–73.

    Google Scholar 

  • Han HS, Kang SB, Yoon KS. High incidence of loosening of the femoral component in legacy posterior stabilised-flex total knee replacement. J Bone Joint Surg Br. 2007;89-B:1457–61.

    Google Scholar 

  • Harper EJ, Bonfield W. Tensile characteristics of ten commercial acrylic bone cements. J Biomed Mater Res. 2000;53:605–16.

    PubMed  CAS  Google Scholar 

  • Hartford JM, Harned ME, Kaufer H, et al. Primary meniscal-bearing knee replacements: 8- to 15-year followup. Clin Orthop. 2007;465:227–31.

    PubMed  Google Scholar 

  • Heck DA, Robinson RL, Partridge CM, et al. Patient outcome after knee replacement. Clin Orthop. 1998;356:93–110.

    PubMed  Google Scholar 

  • Heimke G, Legen S, Willman G. Knee arthroplasty: recently developed ceramics offer new solution. Biomaterials. 2002;23:1539–51.

    PubMed  CAS  Google Scholar 

  • Helm AT, Kerin C, Ghalayini SR, et al. Preliminary results of an uncemented trabecular metal tibial component in total knee arthroplasty. J Arthroplasty. 2009;24:941–4.

    PubMed  Google Scholar 

  • Hirsch HS, Lotke PA, Morrison LD. The posterior cruciate ligament in total knee surgery: save, sacrifice, or substitute? Clin Orthop. 1994;309:64–8.

    PubMed  Google Scholar 

  • Hodrick JT, Severson EP, McAlister DS, et al. Highly crosslinked polyethylene is safe for use in total knee arthroplasty. Clin Orthop. 2008;466:2806–12.

    PubMed  Google Scholar 

  • Hofmann AA, Evanich JD, Ferguson R, et al. Ten-to 14-year clinical follow-up of the cementless Natural Knee System. Clin Orthop. 2001;388:85–94.

    PubMed  Google Scholar 

  • Hofmann AA, McCandless J. Posterior cruciate sacrificing total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1132–4.

    Google Scholar 

  • Ho FY, Ma HM, Liau JJ, et al. Mobile-bearing knees reduce rotational asymmetric wear. Clin Orthop. 2007;462:143–9.

    PubMed  Google Scholar 

  • Hsu HP, Walker PS. Wear and deformation of patellar components in total knee arthroplasty. Clin Orthop. 1989;246:260–5.

    PubMed  Google Scholar 

  • Huddleston JI, Wiley JW, Scott RD. Zone 4 femoral radiolucent lines in hybrid versus cemented total knee arthroplasties: are they clinically significant? Clin Orthop. 2005;441:334–9.

    PubMed  Google Scholar 

  • Hui C, Salmon L, Maeno S, et al. Five-year comparison of oxidized zirconium and cobalt-chromium femoral components in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2011;93-A:624–30.

    Google Scholar 

  • Hungerford DS, Kenna RV. Preliminary experience with a total knee prosthesis with porous coating used without cement. Clin Orthop. 1983;176:96–107.

    Google Scholar 

  • Illgen R, Tueting J, Enright T, et al. Hybrid total knee arthroplasty: a retrospective analysis of clinical and radiographic outcomes at average 10 years follow-up. J Arthroplasty. 2004;19 Suppl 2:95–100.

    PubMed  Google Scholar 

  • Incavo SJ, Mullins ER, Coughlin KM, et al. Tibiofemoral kinematic analysis of kneeling after total knee arthroplasty. J Arthroplasty. 2004;19:906–10.

    PubMed  Google Scholar 

  • Insall JN, Clarke HD. Historic development, classification, and characteristics of knee prosthesis. In: Insall JN, editor. Surgery of the knee. 3rd ed. Philadelphia: Churchill Livingstone; 2001. p. 1516–51.

    Google Scholar 

  • Insall JN, Clarke HD. Historic development, classification, and characteristics of knee prosthesis. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 952–87.

    Google Scholar 

  • Insall JN, Clarke HD. Total knee arthroplasty with posterior cruciate ligament substitution designs. In: Insall JN, editor. Surgery of the knee. 3rd ed. Philadelphia: Churchill Livingstone; 2001. p. 1660–93.

    Google Scholar 

  • Ishii Y, Noguchi H, Takeda M, et al. Changes in the medial and lateral posterior condylar offset in total knee arthroplasty. J Arthroplasty. 2011;26:255–9.

    PubMed  Google Scholar 

  • Jacobs JJ, Gilbert JL, Urban RH. Current concepts review. Corrosion of metal orthopedic implants. J Bone Joint Surg Am. 1998;80-A:268–82.

    Google Scholar 

  • Johnson AJ, Costa CR, Mont MA. Do we need gender-specific total joint arthroplasty. Clin Orthop. 2011;469:1852–8.

    PubMed  Google Scholar 

  • Jones LC, Hungerford DS. Cement disease. Clin Orthop. 1987;225:192–206.

    PubMed  Google Scholar 

  • Kamath AF, Lee GC, Sheth NP, et al. Prospective results of uncemented tantalum monoblock tibia in total knee arthroplasty: minimum 5-year follow-up in patients younger than 55 years. J Arthroplasty. 2011;26:1390–5.

    PubMed  Google Scholar 

  • Kaper BP, Smith PN, Bourne RB, et al. Medium term results of a mobile bearing total knee replacement. Clin Orthop. 1999;367:201–9.

    PubMed  Google Scholar 

  • Keating EM, Meding JB. Implant fixation-cement. In: Callaghan JJ, editor. The adult knee. 1st ed. Philadelphia: Lippincot Williams & Wilkins; 2003. p. 1067–70.

    Google Scholar 

  • Kelly NH, Fu RH, Wright TM, et al. Wear damage in mobile-bearing TKA is as severe as that in fixed-bearing TKA. Clin Orthop. 2011;469:123–30.

    PubMed  Google Scholar 

  • Kim RH, Dennis DA. Mobile-bearing total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1152–60.

    Google Scholar 

  • Kim YH, Choi Y, Kim JS. Comparison of standard and gender-specific posterior-cruciate-retaining high-flexion total knee replacements: a prospective, randomised study. J Bone Joint Surg Br. 2010;92-B:639–45.

    Google Scholar 

  • Kim YH, Choi Y, Kim JS. Range of motion of standard and high-flexion posterior cruciate-retaining total knee prostheses a prospective randomized study. J Bone Joint Surg Am. 2009;91-A:1874–81.

    Google Scholar 

  • Kim YH, Choi Y, Kwon OR, et al. Functional outcome and range of motion of high-flexion posterior cruciate-retaining and high-flexion posterior cruciate-substituting total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am. 2009;91-A:753–60.

    Google Scholar 

  • Kim YH, Yoon SH, Kim JS. The long-term results of simultaneous fixed-bearing and mobile- bearing total knee replacements performed in the same patient. J Bone Joint Surg Br. 2007;89-B:1317–23.

    Google Scholar 

  • Klein GR, Parvizi J, Rapuri VR, et al. The effect of tibial polyethylene insert design on range of motion: evaluation of in vivo knee kinematics by a computerized navigation system during total knee arthroplasty. J Arthroplasty. 2004;19:986–91.

    PubMed  Google Scholar 

  • Kocmond JH, Delp SL, Stern SH. Stability and range of motion of Insall-Burstein condylar prostheses: a computer simulation study. J Arthroplasty. 1995;10:383.

    PubMed  CAS  Google Scholar 

  • Komistek RD, Dennis DA, Mahfouz MR. Fluoroscopic analysis of total knee replacement. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1592–612.

    Google Scholar 

  • Krause WR, Krug W, Eng B, et al. Strength of the cement-bone interface. Clin Orthop. 1982;163:290–9.

    PubMed  Google Scholar 

  • Kumar PJ, Doir LD. Posterior cruciate-sacrificing total knee arthroplasty. In: Scuderi GR, editor. Surgical techniques in total knee arthroplasty. 1st ed. New York: Springer; 2002. p. 61–74.

    Google Scholar 

  • Lachiewicz PF, Bolognesi MP, Henderson RA, et al. Can tantalum cones provide fization in complex revision knee arthroplasty? Clin Orthop. 2012;470:199–204.

    PubMed  Google Scholar 

  • Larson CM, McDowell CM, Lachiewicz PF. One-peg versus three peg patella component fixation in total knee arthroplasty. Clin Orthop. 2001;392:94–100.

    PubMed  Google Scholar 

  • Laskin RS. The Insall Award. Total knee replacement with posterior cruciate ligament retention in patients with a fixed varus deformity. Clin Orthop. 1996;331:29–34.

    PubMed  Google Scholar 

  • Laskin RS. An oxidized Zr ceramic surfaced femoral component for total knee arthroplasty. Clin Orthop. 2003;416:191–6.

    PubMed  Google Scholar 

  • Laskin RS. Improving flexion in TKA. In: Callaghan JJ, editor. The adult knee. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 1233–44.

    Google Scholar 

  • Laskin RS. Total knee arthroplasty using an uncemented, polyethylene tibial implant. A seven-year follow-up study. Clin Orthop. 1993;288:270–6.

    PubMed  Google Scholar 

  • Lee GC, Cushner FD, Vigoritta V, et al. Evaluation of the anterior cruciate ligament integrity and degenerative arthritic patterns in patients undergoing total knee arthroplasty. J Arthroplasty. 2005;20:59–65.

    PubMed  Google Scholar 

  • Lee R, Volz R, Sheridan D. The role of fixation and bone quality on the mechanical stability of tibial knee components. Clin Orthop. 1991;273:177–83.

    PubMed  Google Scholar 

  • Lemns JE. Ceramics. In: Callaghan JJ, editor. The adult hip. 1st ed. Philadelphia: Lippincott-Raven Publishers; 1998. p. 97–104.

    Google Scholar 

  • Li G, Most E, Sultan PG, et al. Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation. J Bone Joint Surg Br. 2004;86-A:1721–9.

    Google Scholar 

  • Linden U. Porosity in manually mixed bone cement. Clin Orthop Relat Res. 1988;231:110–2.

    PubMed  Google Scholar 

  • Lombardi AV, Mallory TH, Fada RA, et al. An algorithm for the posterior cruciate ligament in total knee arthroplasty. Clin Orthop. 2001;392:75–87.

    PubMed  Google Scholar 

  • Lombardi Jr AV, Ellison BS, Berend KR. Polyethylene wear is influenced by manufacturing technique in modular TKA. Clin Orthop. 2008;466:2798–805.

    PubMed  Google Scholar 

  • Lu YC, Huang CH, Chang TK, et al. Wear-pattern analysis in retrieved tibial inserts of mobile-bearing and fixed-bearing total knee prostheses. J Bone Joint Surg Br. 2010;92-B:500–7.

    Google Scholar 

  • MacDonald D, Hanzlik J, Sharkey P, et al. In vivo oxidation and surface damage in retrieved ehtylene oxide-sterilized total knee arthroplasties. Clin Orthop. 2012;470:1826–33.

    PubMed  Google Scholar 

  • Maistrelli GL, Antonelli L, Fornasier V, et al. Cement penetration with pulsed lavage versus syringe irrigation in total knee arthroplasty. Clin Orthop. 1995;312:261–5.

    PubMed  Google Scholar 

  • Mahoney OM, Kinsey TL, D’Errico TJ, et al. No functional advantage of a mobile bearing posterior stabilized TKA. Clin Orthop. 2012;470:33–44.

    PubMed  Google Scholar 

  • Maloney W. Enhanced cross-linked polymers: the promise in the affirmative. Orthopedics. 2002;25:936–7.

    PubMed  Google Scholar 

  • Mann KA, Ayers DC, Werner FW, et al. Tensile strength of the cement-bone interface depends on the amount of bone interdigitated with PMMA cement. J Biomech. 1997;30:339–46.

    PubMed  CAS  Google Scholar 

  • Mann KA, Werner FW, Ayers DC. Mechanical strength of the cement-bone interface is greater in shear than in tension. J Biomech. 1999;32:1251–4.

    PubMed  CAS  Google Scholar 

  • Maruyama S, Yoshiya S, Matsui N, et al. Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty. J Arthroplasty. 2004;19:349–53.

    PubMed  Google Scholar 

  • Massin P, Gournay A. Optimization of the posterior condylar offset, tibial slope, and condylar rollback in total knee arthroplasty. J Arthroplasty. 2006;21:889–96.

    PubMed  Google Scholar 

  • Matsuda S, Ishinishi T, Whiteside LA. Contact stresses with an unresurfaced patella in total knee arthroplasty. The effect of femoral component design. Orthopedics. 2000;23:213–8.

    PubMed  CAS  Google Scholar 

  • McAuley J, Eikmann T. Choosing your implant. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 284–9.

    Google Scholar 

  • McAuley JP, Engh GA. Constraint in total knee arthroplasty: when and what? J Arthroplasty. 2003;18(3 Suppl 1):51–4.

    PubMed  Google Scholar 

  • McCalden RW, MacDonald SJ, Bourne RB, et al. A randomized controlled trial comparing “high-flex” vs “standard” posterior cruciate substituting polyethylene tibial inserts in total knee arthroplasty. J Arthroplasty. 2009;24(6 Suppl):33–8.

    PubMed  Google Scholar 

  • McCaskie AW, Deehan DJ, Green TP, et al. Randomised, prospective study comparing cemented and cementless total knee replacement at five years. J Bone Joint Surg Br. 1998;80-B:971–5.

    Google Scholar 

  • McEwan HMJ, McNulty DE, Auger DD, et al. Wear analysis of mobile bearing knee. In: Hamelynck KJ, editor. LCS mobile bearing knee arthroplasty. 1st ed. Heidelberg: Springer Verlag; 2002. p. 67–73.

    Google Scholar 

  • McNulty DE, Liao YS, Haas BD. The influence of sterilization method on wear performance of the low contact stress total knee system. Orthopedics. 2002;25:243–6.

    Google Scholar 

  • Medel FJ, Kurtz SM, Hozack WJ, et al. Gamma insert sterilization: a solution to polyethyelne oxidation? J Bone Joint Surg Am. 2012;91-A:839–49.

    Google Scholar 

  • Mehin R, Burnett RS, Brasher PM. Does the new generation of high-flex knee prostheses improve the postoperative range of movement? A meta-analysis. J Bone Joint Surg Br. 2010;92-B:1429–34.

    Google Scholar 

  • Merchant AC, Arendt EA, Dye SF, et al. The female knee: anatomic variations and the female-specific total knee design. Clin Orthop. 2008;466:3059–65.

    PubMed  Google Scholar 

  • Menchetti PP, Walker PS. Mechanical evaluation of mobile bearing knees. Am J Knee Surg. 1997;10:73–81.

    PubMed  CAS  Google Scholar 

  • Meneghini RM, Hanssen AD. Management of bone defects in revision total knee arthroplasty: augments, structural and impaction grafts, and cones. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1367–74.

    Google Scholar 

  • Mihalko WM, Creek AT, Mary MN, et al. Mechanoreceptors found in a posterior cruciate ligament from a well-functioning total knee arthroplasty retrieval. J Arthroplasty. 2011;26:504.e9–e12.

    Google Scholar 

  • Mihalko WM, Miller C, Krackow KA. Total knee arthroplasty ligament balancing and gap kinematics with posterior cruciate ligament retention and sacrifice. Am J Orthop. 2000;29:610–6.

    PubMed  CAS  Google Scholar 

  • Miller MA, Race A, Gupta S, et al. The role of cement viscosity on cement-bone apposition and strength: an in vitro model with medullary bleeding. J Arthroplasty. 2007;22:109–16.

    PubMed  Google Scholar 

  • Miura H, Whiteside LA, Easley JC, et al. Effects of screws and a sleeve on initial fixation in uncemented total knee tibial components. Clin Orthop. 1990;259:160–8.

    PubMed  Google Scholar 

  • Moran CG, Pinder IM, Lees TA, et al. Survivorship analysis for the uncemented porous coated anatomic knee replacement. J Bone Joint Surg Am. 1991;73-A:848–57.

    Google Scholar 

  • Morgan H, Battista V, Leopold SS. Constraint in primary total knee arthroplasty. J Am Acad Orthop Surg. 2005;13:515–24.

    PubMed  Google Scholar 

  • Morra EA, Greenwald AS. Polymer insert stress in total knee designs during high-flexion activities: a finite element study. J Bone Joint Surg Am. 2005;87-A:120–4.

    Google Scholar 

  • Nakayama K, Matsuda S, Miura H, et al. Contact stress at the post-cam mechanism in posterior stabilised total knee arthroplasty. J Bone Joint Surg Br. 2005;87-B:483–8.

    Google Scholar 

  • Nett MP, Roehrig GJ, Scuderi GR, et al. Posterior cruciate ligament substituting total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1135–51.

    Google Scholar 

  • Nilsson KG, Karrholm J, Linder L. Femoral component migration in total knee arthroplasty: randomized study comparing cemented and uncemented fixation of the Miller-Galante I design. J Orthop Res. 1995;12:347–56.

    Google Scholar 

  • Nusbaum HJ, Rose RM. The effects of radiation sterilization on the properties of ultra high molecular weight polyethylene. J Biomed Mater Res. 1979;13:557–76.

    PubMed  CAS  Google Scholar 

  • O’Keefe TJ, Winter S, Lewallen DG, et al. Clinical and radiographic evaluation of a monoblock tibial component. J Arthroplasty. 2010;25:785–92.

    PubMed  Google Scholar 

  • Oh KJ, Pandher DS, Lee SH, et al. Meta-analysis comparing outcomes of fixed-bearing and mobile-bearing prostheses in total knee arthroplasty. J Arthroplasty. 2009;24:873–84.

    PubMed  Google Scholar 

  • Onishi M. Surgical use of ceramic apatites. Nippon Shika Ishikai Zasshi. 1983;36:803–10.

    PubMed  CAS  Google Scholar 

  • Oral E, Malhi AS, Wannomae KK, et al. Highly cross-linked ultrahigh molecular weight polyethylene with improved fatigue resistance for total joint arthroplasty: recipient of the 2006 Hap Paul Award. J Arthroplasty. 2008;23:1037–44.

    PubMed  Google Scholar 

  • Parks NL, Engh GA, Topoleski LD, et al. Modular tibial insert micromotion: a concern with contemporary knee implants. Clin Orthop. 1998;356:10–5.

    PubMed  Google Scholar 

  • Park JW, Kim YH. Simultaneous cemented and cementless total knee replacement in the same patients. J Bone Joint Surg Br. 2011;93-B:1479–86.

    Google Scholar 

  • Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on boneingrowth into porous-surfaced implants. Clin Orthop. 1986;208:108–13.

    PubMed  Google Scholar 

  • Pittman GT, Peters CL, Hines JL, Bachus KN. Mechanical bond strength of the cement-tibial component Interface in total knee arthroplasty. J Arthroplasty. 2006;21:883–8.

    PubMed  Google Scholar 

  • Pritchett JW. Patients prefer a bicruciate-retaining or the medial pivot total knee prosthesis. J Arthroplasty. 2011;26:224–8.

    PubMed  Google Scholar 

  • Ranawat AS, Mohanty SS, Goldsmith SE, et al. Experience with an all-polyethylene total knee arthroplasty in younger, active patients with follow-up from 2 to 11 years. J Arthroplasty. 2005;20 Suppl 3:7–11.

    PubMed  Google Scholar 

  • Rand JA. Cement or cementless fixation in total knee arthroplasty? Clin Orthop. 1991;273:52–62.

    PubMed  Google Scholar 

  • Reckling FW, Dillon WL. The bone-cement interface temperature during total joint replacement. J Bone Joint Surg Am. 1977;59-A:80–2.

    Google Scholar 

  • Ries MD, Cabalo A, Bozic KJ, et al. Porous tantalum patellar augmentation: the importance of residual bone stock. Clin Orthop. 2006;452:166–70.

    PubMed  Google Scholar 

  • Ries MD, Salehi A, Widding K, et al. Polyethylene wear performance of oxidized zirconium and cobalt-chromium knee components under abrasive wear. J Bone Joint Surg Am. 2002;84-A:129–35.

    PubMed  Google Scholar 

  • Rimnac CM, Klein RW, Betts F, et al. Post irradiation aging of ultra-high molecular weight polyethylene. J Bone Joint Surg Am. 1994;76-A:1052–6.

    Google Scholar 

  • Ritter MA. Enhanced cross-linked polymers: the promise-in opposition. Orthopedics. 2002;25:938.

    PubMed  Google Scholar 

  • Ritter MA. High-flexion knee designs: more hype than hope? In the affirmative. J Arthroplasty. 2006;21 Suppl 1:40–1.

    PubMed  Google Scholar 

  • Ritter MA, Herbst SA, Keating EM, et al. Radiolucency at the bone cement interface in total knee replacement. J Bone Joint Surg Am. 1994;76-A:60–5.

    Google Scholar 

  • Ritter MA, Wing JT, Berend ME, et al. The clinical effect of gender on outcome of total knee arthroplasty. J Arthroplasty. 2008;23:331–6.

    PubMed  Google Scholar 

  • Rosenberg AG. Posterior cruciate ligament retention in total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1125–31.

    Google Scholar 

  • Sawaguchi N, Majima T, Ishigaki T, et al. Mobile-bearing total knee arthroplasty improves patellar tracking and patellofemoral contact stress: in vivo measurements in the same patients. J Arthroplasty. 2010;25:920–5.

    PubMed  Google Scholar 

  • Schindler OS. Patellar resurfacing in total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1161–90.

    Google Scholar 

  • Scott RD. A brief history of three decades of evolution of total knee arthroplasty in Boston. In: Scott RD, editor. Total knee arthroplasty. 1st ed. Philadelphia: Saunders; 2006. p. 1–7.

    Google Scholar 

  • Scott RD, Volatile TB. Twelve years experience with posterior cruciate-retaining total knee arthroplasty. Clin Orthop. 1986;205:100–7.

    PubMed  Google Scholar 

  • Sculco TP. The role of constraint in total knee arthroplasty. J Arthroplasty. 2006;21(4 Suppl 1):54–6.

    PubMed  Google Scholar 

  • Seon JK, Park SJ, Lee KB, et al. Range of motion in total knee arthroplasty: a prospective comparison of high-flexion and standard cruciate-retaining designs. J Bone Joint Surg Am. 2009;91-A:672–9.

    Google Scholar 

  • Shannon FJ, Cronin JJ, Cleary MS, et al. The posterior cruciate ligament-preserving total knee replacement: do we ‘preserve’ it? A radiological study. J Bone Joint Surg Br. 2007;89-B:766–71.

    Google Scholar 

  • Sharma A, Komistek RD, Ranawat CS, Dennis DA, Mahfouz MR. In vivo contact pressures in total knee arthroplasty. J Arthroplasty. 2007;22:404–16.

    PubMed  Google Scholar 

  • Shimizu N, Tomita T, Yamazaki T, et al. The effect of weight-bearing condition on kinematics of a high-flexion, posterior-stabilized knee prosthesis. J Arthroplasty. 2011;26:1031–7.

    PubMed  Google Scholar 

  • Simmons S, Lephart S, Rubash H, et al. Proprioception following total knee arthroplasty with and without the posterior cruciate ligament. J Arthroplasty. 1996;11:763–8.

    PubMed  CAS  Google Scholar 

  • Small SR, Berend ME, Ritter MA, et al. A comparison in proximal tibial strain between metal-backed and all-polyethylene anatomic graduated component total knee arthroplasty tibial components. J Arthroplasty. 2010;25:820–5.

    PubMed  Google Scholar 

  • Sorrels RB, Stiehl JB. Long-term outcomes of a rotating platform mobile bearing prosthesis after total knee arthroplasty. J Arthroplasty. 2004;19:255.

    Google Scholar 

  • Springer BD, Mason JB. Cemented total knee arthroplasty: the gold standard. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1108–11.

    Google Scholar 

  • Stern SH, Sills RD, Gilbert JL. The effect of tibial stem design on component micromotion in knee arthroplasty. Clin Orthop. 1997;345:44–52.

    PubMed  Google Scholar 

  • Stiehl JB. Mobile bearings in total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1558–73.

    Google Scholar 

  • Stiehl JB, Komistek RD, Dennis DA, et al. Fluoroscopic analysis of kinematics after posterior cruciate-retaining knee arthroplasty. J Bone Joint Surg Br. 1995;77-B:884–9.

    Google Scholar 

  • Vail TP, Lang JE, Sikes III CV. Surgical techniques and instrumentation in total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1042–99.

    Google Scholar 

  • Van Citters PW, Collier JP. The retrieval laboratory: making sense of knee implant revision. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 290–303.

    Google Scholar 

  • Victor J, Banks S, Bellemans J. Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br. 2005;87-B:646–55.

    Google Scholar 

  • Victor J, Mueller JK, Komistek RD, et al. In vivo kinematics after a cruciate-substituting TKA. Clin Orthop. 2010;468:807–14.

    PubMed  Google Scholar 

  • Vince KG, Malo M, Thadan PJ. Posterior stabilization in total knee arthroplasty. In: Callaghan JJ, editor. The adult knee. 1st ed. Philadelphia: Lippincot Williams & Wilkins; 2003. p. 1145–61.

    Google Scholar 

  • Voigt J, Mosier M. Cemented all-polyethylene and metal-backed polyethylene tibial components used for primary total knee arthroplasty: a systematic review of the literature and meta-analysis of randomized controlled trials involving 1798 primary total knee implants. J Bone Joint Surg Am. 2011;93-A:1790–8.

    Google Scholar 

  • Wang A, Yau SS, Essner A, et al. A highly crosslinked UHMWPE for CR and PS total knee arthroplasties. J Arthroplasty. 2008;23:559–66.

    PubMed  Google Scholar 

  • Wasielewski RC, Komistek RD, Zingde SM, et al. Lack of axial rotation in mobile-bearing knee designs. Clin Orthop. 2008;466:2662–8.

    PubMed  Google Scholar 

  • Whiteside LA. Cementless total knee design. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1613–25.

    Google Scholar 

  • Whiteside LA. Cementless total knee design. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1112–24.

    Google Scholar 

  • Whiteside LA, Nagamine R. Biomechanical aspects of knee replacement design. In: Scott WN, editor. The knee. 1st ed. St. Louis: Mosby; 1994. p. 1079–96.

    Google Scholar 

  • Wilson DA, Astephen JL, Hennigar AW, et al. Inducible displacement of a trabecular metal tibial monoblock component. J Arthroplasty. 2010;25:893–900.

    PubMed  Google Scholar 

  • Wixson RL, Lautenschlager EP. Methylmethacrylate. In: Callaghan JJ, editor. The adult hip. 1st ed. Philadelphia: Lippincott-Raven Publishers; 1998. p. 135–57.

    Google Scholar 

  • Yoshii I, Whiteside LA, Anouch YS. The effect of patellar button placement and femoral component design on patellar tracking in total knee arthroplasty. Clin Orthop. 1992;275:211–9.

    PubMed  Google Scholar 

  • Yoshiya S, Matsui N, Komistek RD, et al. In vivo kinematic comparison of posterior cruciate retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty. 2005;20:777–83.

    PubMed  Google Scholar 

  • Zhang K, Mihalko WM. Posterior cruciate mechnoreceptors in osteoarthritic and cruciate-retaining TKA retrievals: a pilot study. Clin Orthop. 2012;470:1855–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cho, W. (2014). Implant Selection. In: Knee Joint Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39389-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39389-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39388-4

  • Online ISBN: 978-3-642-39389-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics