Skip to main content

Genomics and Spectroscopy Provide Novel Insights into the Mechanisms of Litter Decomposition and Nitrogen Assimilation by Ectomycorrhizal Fungi

  • Chapter
  • First Online:
Book cover Genomics of Soil- and Plant-Associated Fungi

Part of the book series: Soil Biology ((SOILBIOL,volume 36))

  • 2152 Accesses

Abstract

The majority of nitrogen in forest soils is found in organic form, primarily as proteins. This nitrogen is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. In this review, we will describe how a combination of spectroscopic methods and transcriptome analyses has provided novel insights into the mechanisms by which the ectomycorrhizal fungus Paxillus involutus decomposes organic matter when acquiring nitrogen from plant litter. The observed chemical changes were consistent with a hydroxyl-radical attack, involving Fenton chemistry similar to that of saprophytic brown-rot fungi. Unlike the saprophytic fungi, P. involutus did not show any expression of genes encoding extracellular enzymes needed to metabolize the released carbon. We suggest that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. Indeed experiments have shown that the decomposition of plant litter and assimilation of nitrogen are triggered by the addition of glucose. In contrast, the addition of ammonium, the most abundant inorganic N form in forest soils, had relatively minor effects of the decomposition of litter material by P. involutus. The data suggest that the expression of the decomposition and nitrogen assimilation processes can be tightly regulated by the host carbon supply. Finally, the prospects of using novel spectroscopic methods and transcriptomic data to identify specific transcripts or chemical signatures that can be used as biomarkers for probing the activity of mycorrhizal fungi in the field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuzinadah RA, Finlay BJ, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilizations of proteins by mycorrhizal plants of Pinus contorta. New Phytol 103:495–506

    Article  CAS  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2009) Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161:657–660

    Article  PubMed  Google Scholar 

  • Bending GD (2003) Litter decomposition, ectomycorrhizal roots and the ‘Gadgil’ effect. New Phytol 158:227–238

    Article  Google Scholar 

  • Bending GD, Read DJ (1995) The structure and the function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytol 130:411–417

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complexes by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    Article  CAS  Google Scholar 

  • Bengtson P, Barker J, Grayston SJ (2012) Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol Evol 2:1843–1852

    Article  PubMed  Google Scholar 

  • Benjdia M, Rikirsch E, Muller T, Morel M, Corratge C, Zimmermann SD (2006) Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). New Phytol 170:401–410

    Article  PubMed  CAS  Google Scholar 

  • Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ectomycorrhizal symbiosis. New Phytol 134:685–695

    Article  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44

    Article  PubMed  CAS  Google Scholar 

  • Chen DM, Bastias BA, Taylor AFS, Cairney JWG (2003) Identification of laccase-like genes in basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol 157:547–554

    Article  CAS  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H et al (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  PubMed  CAS  Google Scholar 

  • Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319

    Article  PubMed  CAS  Google Scholar 

  • Courty PE, Bréda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663

    Article  CAS  Google Scholar 

  • Cullings K, Ishkhanova G, Henson J (2008) Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park. Oecologia 158:77–83

    Article  PubMed  Google Scholar 

  • De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A et al (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765

    Article  PubMed  CAS  Google Scholar 

  • Edwards IP, Zak DR, Kellner H, Eisenlord SD, Pregitzer KS (2011) Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS One 6:e20421

    Article  PubMed  CAS  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE et al (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 109:2666–2671

    Article  PubMed  CAS  Google Scholar 

  • Fenn P, Kirk TK (1981) Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Arch Microbiol 130:59–65

    Article  CAS  Google Scholar 

  • Frank AB (1894) Die Bedeutung der Mykorrhizapilze für die Gemeine Kiefer. Fortstwissenschaftliche Centralblat 16:1852–1890

    Google Scholar 

  • Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352–354

    Article  CAS  Google Scholar 

  • Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocellulose. In: Hofrichter M (ed) The mycota X. Industrial applications. Springer, Berlin

    Google Scholar 

  • Izumi H, Finlay RD (2011) Ectomycorrhizal roots select distinctive bacterial and ascomycete communities in Swedish subarctic forests. Environ Microbiol 13:819–830

    Article  PubMed  Google Scholar 

  • Kellner H, Zak DR, Vandenbol M (2010) Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One 5:e10971

    Article  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  PubMed  CAS  Google Scholar 

  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015

    Article  PubMed  CAS  Google Scholar 

  • Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol 21:71–82

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Solomon D, Kinyangi J, Wirick S, Jacobsen C (2008) Spatial complexity of soil organic matter forms at nanometre scales. Nat Geosci 1:238–242

    Article  CAS  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  PubMed  CAS  Google Scholar 

  • Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A (2008) A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol 180:343–364

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  PubMed  CAS  Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959

    Article  PubMed  CAS  Google Scholar 

  • Martinez AT, Rencoret J, Nieto L, Jimenez-Barbero J, Gutierrez A, del Rio JC (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol 13:96–107

    Article  PubMed  CAS  Google Scholar 

  • Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838

    Article  PubMed  CAS  Google Scholar 

  • Marzluf GA (1996) Regulation of nitrogen metabolism in mycelial fungi. In: Brambl B, Marzluf GA (eds) The mycota III. Biochemistry and molecular biology. Springer, Berlin

    Google Scholar 

  • Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG et al (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci USA 109:17501–17506

    Article  PubMed  CAS  Google Scholar 

  • Nagendran S, Hallen-Adams HE, Paper JM, Aslam N, Walton JD (2009) Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol 46:427–435

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri N, Eldor P (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Nehls U, Kleber R, Wiese J, Hampp R (1999) Isolation and characterization of an general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytol 142:331–341

    Google Scholar 

  • Nehls U, Bock A, Einig W, Hampp R (2001) Excretion of two proteases by the ectomycorrhizal fungus Amanita muscaria. Plant Cell Environ 24:741–747

    Article  CAS  Google Scholar 

  • Nehls U, Grunze N, Willmann M, Reich M, Kuster H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68:82–91

    Article  PubMed  CAS  Google Scholar 

  • Nehls U, Gohringer F, Wittulsky S, Dietz S (2010) Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 12:292–301

    Article  PubMed  CAS  Google Scholar 

  • Norkrans B (1950) Studies in growth and cellulolytic enzymes of Tricholoma. Symbolae Botanicae Upsaliensis 11:1–126

    Google Scholar 

  • Nygren CJM, Edqvist J, Elfstrand M, Heller G, Taylor AFS (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–248

    Article  PubMed  CAS  Google Scholar 

  • Olsson PA, Chalot M, Bååth E, Finlay RD, Söderström B (1996) Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiol Ecol 21:77–86

    Article  CAS  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Pritsch K, Garbaye J (2011) Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann Forest Sci 68:25–32

    Article  Google Scholar 

  • Quinlan RJ, Sweeney MD, Lo LL, Otten H, Poulsen JC, Johansen KS et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084

    Article  PubMed  CAS  Google Scholar 

  • Ralph J, Lundquidt K, Brunow G, Lu F, Kim H, Schatz PF et al (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  • Ramstedt M, Söderhäll K (1983) Protease, phenoloxidase and pectinase activities in mycorrhizal fungi. Trans Br Mycol Soc 81:157–161

    Article  CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Rineau F, Roth D, Shah F, Smits M, Johansson T, Canback B et al (2012) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 14:1477–1487

    Article  PubMed  CAS  Google Scholar 

  • Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R et al (2013) Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J (in press). doi: 10.1038/ismej.2013.91

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  PubMed  CAS  Google Scholar 

  • Senesi N, Miano TM, Provenzano MR, Brunetti G (1991) Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci 152:259–271

    Article  CAS  Google Scholar 

  • Shah F, Rineau F, Canbäck B, Johansson T, Tunlid A (2013) The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus. New Phytol (in press)

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    Article  PubMed  CAS  Google Scholar 

  • Talbot JM, Treseder KK (2010) Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia 53:169–179

    Article  CAS  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposer ín disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Func Ecol 22:955–963

    Article  Google Scholar 

  • Trappe JM (2005) A.B.. Frank and mycorrhizae: the challenge to evolutionary and ecological theory. Mycorrhiza 15:277–281

    Article  PubMed  Google Scholar 

  • Trojanowski J, Haider K, Huttermann A (1984) Decomposition of 14C labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139:202–206

    Article  CAS  Google Scholar 

  • Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O et al (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610

    Article  Google Scholar 

  • Wallander H, Söderström B (1999) Paxillus. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin

    Google Scholar 

  • Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. Forest Ecol Manage 262:999–1007

    Article  Google Scholar 

  • Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119–124

    Article  PubMed  CAS  Google Scholar 

  • Wright DP, Johansson T, Le Quéré A, Söderström B, Tunlid A (2005) Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula Roth.) seedlings in soil microcosms. New Phytol 167:579–596

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Sharda JN, Koide RT (2003) Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using protein-tannin complex as an N source by red pine (Pinus resinosa). New Phytol 159:131–139

    Article  CAS  Google Scholar 

  • Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Guo DC, Dancik BP (1990) Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus Hebeloma crustuliniforme. Appl Environ Microbiol 56:837–843

    PubMed  CAS  Google Scholar 

  • Zhu H, Dancik BP, Higginbotham KO (1994) Regulation of extracellular proteinase production in an ectomycorrhizal fungus Hebeloma crustuliniforme. Mycologia 86:227–234

    Article  CAS  Google Scholar 

  • Zimmerman AE, Martiny AC, Allison SD (2013) Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME J 7:1187–1199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work has been supported by grants from the Swedish Research Council (VR), the strategic research program Biodiversity and Ecosystem Services in a Changing Climate (BECC) and the Danish Agency for Science and Technology, and the Research Foundation—Flanders (FWO). The genome and transcriptome sequencing of Paxillus involutus was funded by grants from the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Tunlid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tunlid, A. et al. (2013). Genomics and Spectroscopy Provide Novel Insights into the Mechanisms of Litter Decomposition and Nitrogen Assimilation by Ectomycorrhizal Fungi. In: Horwitz, B., Mukherjee, P., Mukherjee, M., Kubicek, C. (eds) Genomics of Soil- and Plant-Associated Fungi. Soil Biology, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39339-6_8

Download citation

Publish with us

Policies and ethics