Skip to main content

Abiotic Factors Influencing Nitrogen-Fixing Actinorhizal Symbioses

  • Chapter
  • First Online:
Symbiotic Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 37))

Abstract

Members of the soil bacterial genus Frankia are nitrogen (N2)-fixing actinomycetes that establish root nodule symbiosis with more than 200 species of angiosperms belonging to 25 genera in eight families (actinorhizal plants). All of the hosts are perennial dicotyledonous plants that, with the exception of the genus Datisca, are trees or shrubs. Frankia infects roots via root hairs in some hosts or by intercellular penetration in others. The root nodules are perennial clusters of modified lateral roots. Frankia is capable of N2-fixation in root nodules. A number of environmental factors affect not only the infection or nodulation of Frankia but also the N2-fixation of actinorhizal plants. Physiological and genomic analyses have provided an improved understanding of resistance among Frankia strains to heavy metals and the effects of inorganic compounds on the infectious pathways of the bacterium. Anthropogenic environmental changes, such as increasing atmospheric carbon dioxide concentrations ([CO2]), ozone pollution, and acid rain, potentially impact physiological properties of Frankia–actinorhizal symbioses. Many recent studies on the effects of elevated [CO2] on actinorhizal symbioses suggest that interactions among diverse environmental factors should be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    PubMed  CAS  Google Scholar 

  • Alloisio N, Felix S, Marechal J, Pujic P, Rouy Z, Vallenet D, Medigue C, Normand P (2007) Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol Plant 130:440–453

    CAS  Google Scholar 

  • Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Medigue C, Yamaura M, Kakoi K, Kucho K (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607

    PubMed  CAS  Google Scholar 

  • Anderson MD, Ruess RW, Myrold DD, Taylor DL (2009) Host species and habitat affect nodulation by specific Frankia genotypes in two species of Alnus in interior Alaska. Oecologia 160:619–630

    PubMed  Google Scholar 

  • Arnone JA III, Gordon JC (1990) Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytol 116:55–66

    CAS  Google Scholar 

  • Arnone JA, Kohls SJ, Baker DD (1994) Nitrate effects on nodulation and nitrogenase activity of actinorhizal Casuarina studied in split-root systems. Soil Biol Biochem 26:599–606

    CAS  Google Scholar 

  • Baker DD, Schwintzer CR (1990) Introduction. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, CA

    Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Römheld V, Marschner H (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol 100:451–456

    PubMed  CAS  Google Scholar 

  • Becerra AG, Menoyo E, Lett I, Li CY (2009) Alnus acuminata in dual symbiosis with Frankia and two different ectomycorrhizal fungi (Alpova austroalnicola and Alpova diplophloeus) growing in soilless growth medium. Symbiosis 47:85–92

    Google Scholar 

  • Bélanger PA, Beaudin J, Roy S (2011a) High-throughput screening of microbial adaptation to environmental stress. J Microbiol Methods 85:92–97

    PubMed  Google Scholar 

  • Bélanger PA, Bissonnette C, Bernéche-D’Amours A, Bellenger JP, Roy S (2011b) Assessing the adaptability of the actinorhizal symbiosis in the face of environmental change. Environ Exp Bot 74:98–105

    Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci USA 90:6091

    PubMed  CAS  Google Scholar 

  • Bolaños L, Redondo-Nieto M, Bonilla I, Wall LG (2002) Boron requirement in the Discaria trinervis (Rhamnaceae) and Frankia symbiotic relationship. Its essentiality for Frankia BCU110501 growth and nitrogen fixation. Physiol Plant 115:563–570

    PubMed  Google Scholar 

  • Brown KR, Courtin PJ (2003) Effects of phosphorus fertilization and liming on growth, mineral nutrition, and gas exchange of Alnus rubra seedlings grown in soils from mature alluvial Alnus stands. Can J For Res 33:2089–2096

    Google Scholar 

  • Burleigh SH, Dawson JO (1991) In vitro sporulation of Frankia strain HFPCcI3 from Casuarina cunninghamiana. Can J Microbiol 37:897–901

    CAS  Google Scholar 

  • Calfapietra C, Ainsworth EA, Beier C, Angelis PD, Ellsworth DS, Godbold DL, Hendrey GR, Hickler T, Hoosbeek MR, Karnosky DF, King J, Körner C, Leakey ADB, Lewin KF, Liberloo M, Long SP, Lukac M, Matyssek R, Miglietta F, Nagy J, Norby RJ, Oren R, Percy KE, Rogers A, Mugnozza GS, Stitt M, Taylor G, Ceulemans R (2010) Challenges in elevated CO2 experiments on forests. Trends Plant Sci 15:5–10

    PubMed  CAS  Google Scholar 

  • Chaia EE, Vobis G (2000) Seasonal change of the actinorhizal nodules and the movement of N in Discaria trinervis. In: Pedrosa FO et al (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer Academic, Dordrecht

    Google Scholar 

  • Claessens H, Oosterbaan A, Savill P, Rondeux J (2010) A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83:163–175

    Google Scholar 

  • Cusato MS, Tortosa RD, Valiente L, Barneix AJ, Puelles MM (2007) Effects of Zn2+ on nodulation and growth of a South American actinorhizal plant, Discaria americana (Rhamnaceae). World J Microbiol Biotechnol 23:771–777

    CAS  Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbiosis. Springer, Dordrecht

    Google Scholar 

  • Doyle JJ (1998) Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends Plant Sci 3:473–478

    Google Scholar 

  • Eguchi N, Karatsu K, Ueda T, Funada R, Takagi K, Hiura T, Sasa K, Koike T (2008) Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in northern Japan. Trees 22:437–447

    CAS  Google Scholar 

  • Ekblad A, Lundquist P-O, Sjöström M, Huss-Danell K (1994) Day-to-day variation in nitrogenase activity of Alnus incana explained by weather variables: a multivariate time series analysis. Plant Cell Environ 17:319–325

    CAS  Google Scholar 

  • Gardner IC, Barrueco CR (1999) Mycorrhizal and actinorhizal biotechnology–problems and prospects. In: Varma A, Hock B (eds) Mycorrhiza, 2nd edn. Springer, Berlin

    Google Scholar 

  • Gentili F (2006) Phosphorus, nitrogen and their interactions affect N2 fixation, N isotope fractionation and N partitioning in Hippophae rhamnoides. Symbiosis 41:39–45

    Google Scholar 

  • Gentili F, Huss-Danell K (2002) Phosphorus modifies the effects of nitrogen on nodulation in split-root systems of Hippophae rhamnoides. New Phytol 153:53–61

    CAS  Google Scholar 

  • Gentili F, Huss-Danell K (2003) Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J Exp Bot 54:2757–2767

    PubMed  CAS  Google Scholar 

  • Gentili F, Wall LG, Huss-Danell K (2006) Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cortical cell divisions in Alnus incana. Ann Bot 98:309–315

    PubMed  Google Scholar 

  • Gress SE, Nichols TD, Northcraft CC, Peterjohn WT (2007) Nutrient limitation in soil exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology 88:119–130

    PubMed  Google Scholar 

  • Gunthardt-Goerg MS, McQuattie CJ, Scheidegger C, Rhiner C, Matyssek R (1997) Ozone-induced cytochemical and ultrastructural changes in leaf mesophyll cell walls. Can J For Res 27:453–463

    CAS  Google Scholar 

  • Hafeez FY, Hameed S, Malik KA (1999) Frankia and Rhizobium strains as inoculum for growing trees in a saline environment. Pak J Bot 31:173–182

    Google Scholar 

  • Hibbs DE, Cromack C Jr (1990) Actinorhizal plants in pacific northwest forests. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, CA

    Google Scholar 

  • Hoosbeek MR, Lukac M, Velthorst E, Smith AR, Godbold DL (2011) Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales. Biogeoscience 8:353–364

    CAS  Google Scholar 

  • Hurd TM, Raynal DJ, Schwintzer CR (2001) Symbiotic N2 fixation of Alnus incana ssp. rugosa in shrub wetlands of the Adirondack Mountains, New York, USA. Oecologia 126:94–103

    Google Scholar 

  • Huss-Danell K (1990) The physiology of actinorhizal nodules. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, CA

    Google Scholar 

  • Huss-Danell K (1997) Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405

    CAS  Google Scholar 

  • Hyvönen R, Ã…gren GI, Linder S, Persson T, Cotrufo F, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    PubMed  Google Scholar 

  • Igual JM, Dawson JO (1999) Stimulatory effects of aluminum on in vitro growth of Frankia. Can J Bot 77:1321–1326

    CAS  Google Scholar 

  • Igual JM, Rodriguez-Barrueco C, Cervantes E (1997) The effects of aluminium on nodulation and symbiotic nitrogen fixation in Casuarina cunninghamiana Miq. Plant Soil 190:41–46

    CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ishii G (2003) Sea buckthorn (Hippophae rhamnoides. L.) production manual. Misc Pub Natl Agric Res Cent Hokkaido Reg 62:1–32 (In Japanese)

    Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    PubMed  CAS  Google Scholar 

  • Jeong SC, Ritchie NJ, Myrold DD (1999) Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Mol Phylogenet Evol 13:493–503

    PubMed  CAS  Google Scholar 

  • Jha DK, Sharma GD, Mishra RR (1993) Mineral nutrition in the tripartite interaction between Frankia, Glomus and Alnus at different soil phosphorus regimes. New Phytol 123:307–311

    CAS  Google Scholar 

  • Kaelke CM, Dawson JO (2003) Seasonal flooding regimes influence survival, nitrogen fixation, and the partitioning of nitrogen and biomass in Alnus incana ssp. rugosa. Plant Soil 254:167–177

    CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997) Comparison of photosynthetic responses to manganese toxicity of deciduous broad-leaved trees in northern Japan. Environ Pollut 97:113–118

    PubMed  CAS  Google Scholar 

  • Kitao M, Winkler JB, Löw M, Nunn AJ, Kuptz D, Haberle KH, Reiter IM, Matyssek R (2012) How closely does stem growth of adult beech (Fagus sylvatica) relate to net carbon gain under experimentally enhanced ozone stress. Environ Pollut 166:108–115

    PubMed  CAS  Google Scholar 

  • Knowlton S, Dawson JO (1983) Effects of Pseudomonas cepacia and cultural factors on the nodulation of Alnus rubra roots by Frankia. Can J Bot 61:2877–2882

    Google Scholar 

  • Koike T, Kitao M, Maruyama Y, Mori S, Lei TT (2001) Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiol 21:951–958

    PubMed  CAS  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    PubMed  Google Scholar 

  • Li CY, Strzelczyk E (2000) Belowground microbial processes underpin forest productivity. Phyton 40:129–134

    Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Google Scholar 

  • Manning WJ, Godzik B (2004) Bioindicator plants for ambient ozone in central and eastern Europe. Environ Pollut 130:33–39

    PubMed  CAS  Google Scholar 

  • Mattsson U, Sellstedt A (2002) Nickel affects activity more than expression of hydrogenase protein in Frankia. Current Microbiol 44:88–93

    PubMed  CAS  Google Scholar 

  • Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59:325–334

    Google Scholar 

  • Mortensen LM, Skre O (1990) Effects of low ozone concentrations on growth of Betula pubescens Ehrh., Betula verrucosa Ehrh. and Alnus incana (L.) Moench. New Phytol 115:165–170

    CAS  Google Scholar 

  • Niemann J, Tisa LS (2008) Nitric oxide and oxygen regulate truncated hemoglobin gene expression in Frankia strain CcI3. J Bacteriol 190:7864–7867

    PubMed  CAS  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    PubMed  Google Scholar 

  • Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77

    PubMed  CAS  Google Scholar 

  • Prégent G, Camiré C (1985) Mineral nutrition, dinitrogen fixation, and growth Alnus crispa and Alnus glutinosa. Can J For Res 15:855–861

    Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    PubMed  CAS  Google Scholar 

  • Rogers A, Ainsworth EA, Leakey DB (2009) Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 151:1009–1016

    PubMed  CAS  Google Scholar 

  • Rojas NS, Perry DA, Li CY, Friedman J (1992) Influence of actinomycetes on Frankia infection, nitrogenase activity and seedling growth of red alder. Soil Biol Biochem 24:1043–1049

    Google Scholar 

  • Rojas NS, Perry DA, Li CY, Ganio LM (2002) Interactions among soil biology, nutrition, and performance of actinorhizal plant species in the H. J. Andrews Experimental Forest of Oregon. Appl Soil Ecol 19:13–26

    Google Scholar 

  • Rose SL (1980) Mycorrhizal associations of some actinomycete nodulated nitrogen-fixing plants. Can J Bot 58:1449–1454

    Google Scholar 

  • Rose SL, Youngberg CT (1981) Tripartite associations in snowbrush (Ceanothus velutinus): effect of vesicular-arbuscular mycorrhizae on growth, nodulation, and nitrogen fixation. Can J Bot 59:34–39

    CAS  Google Scholar 

  • Santos CL, Vieira J, Sellstedt A, Normand P, Moradas-Ferreira P, Tavares F (2007) Modulation of Frankia alni ACN14a oxidative stress response: activity, expression and phylogeny of catalases. Physiol Plant 130:454–463

    CAS  Google Scholar 

  • Sasakura F, Uchiumi T, Shimoda Y, Suzuki A, Takenouchi K, Higashi S, Abe M (2006) A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide. Mol Plant Microbe Interact 19:441–450

    PubMed  CAS  Google Scholar 

  • Seed JD, Bishop JG (2009) Low Frankia inoculation potentials in primary successional sites at Mount St. Helens, Washington, USA. Plant Soil 323:225–233

    Google Scholar 

  • Sharma G, Sharma R, Sharma E (2010) Impact of altitudinal gradients on energetics and efficiencies of N2-fixation in alder-cardamom agroforestry systems of the eastern Himalayas. Ecol Res 25:1–12

    Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Google Scholar 

  • Singh A, Mishra AK, Singh SS, Sarma HK, Shukla E (2008) Influence of iron and chelator on siderophore production in Frankia strains nodulating Hippophae salicifolia D. Don. J Basic Microbiol 48:104–111

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York, NY

    Google Scholar 

  • Son Y, Lee YY, Lee CY, Yi MJ (2007) Nitrogen fixation, soil nitrogen availability, and biomass in pure and mixed plantations of alder and pine in central Korea. J Plant Nutr 30:1841–1853

    CAS  Google Scholar 

  • Swensen SM (1996) The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association. Am J Bot 83:1503–1512

    Google Scholar 

  • Swensen SM, Benson DR (2008) Evolution of actinorhizal host plants and Frankia endosymbionts. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht

    Google Scholar 

  • Tani C, Sasakawa H (2000) Salt tolerance of Elaeagnus macrophylla and Frankia Ema1 strain isolated from the root nodules of E. macrophylla. Soil Sci Plant Nutr 46:927–937

    Google Scholar 

  • Tani C, Sasakawa H (2003) Salt tolerance of Casuarina equisetifolia and Frankia Ceq1 strain isolated from the root nodules of C. equisetifolia. Soil Sci Plant Nutr 49:215–222

    Google Scholar 

  • Tateno M (2003) Benefit to N2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption. Oecologia 137:338–343

    PubMed  Google Scholar 

  • Tavares F, Santos CL, Sellstedt A (2007) Reactive oxygen species in legume and actinorhizal nitrogen-fixing symbioses: the microsymbiont’s responses to an unfriendly reception. Physiol Plant 130:344–356

    CAS  Google Scholar 

  • Temperton VM, Grayston SJ, Jackson G, Barton CVM, Millard P, Jarvis PG (2003) Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Tree Physiol 23:1051–1059

    PubMed  CAS  Google Scholar 

  • Thomas RB, Bashkin MA, Richter DD (2000) Nitrogen inhibition of nodulation and N2 fixation of a tropical N2-fixing tree (Gliricidia sepium) grown in elevated atmospheric CO2. New Phytol 145:233–243

    CAS  Google Scholar 

  • Tian C, He X, Zhong Y, Chen J (2002) Effects of VA mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. For Ecol Manage 170:307–312

    Google Scholar 

  • Tobita H, Kitao M, Koike T, Maruyama Y (2005) Effects of elevated CO2 and nitrogen availability on nodulation of Alnus hirsuta Turcz. Phyton 45:125–131

    CAS  Google Scholar 

  • Tobita H, Uemura A, Kitao M, Kitaoka S, Utsugi H (2010) Interactive effects of elevated CO2, phosphorus deficiency, and soil drought on nodulation and nitrogenase activity in Alnus hirsuta and Alnus maximowiczii. Symbiosis 50:59–69

    CAS  Google Scholar 

  • Tobita H, Uemura A, Kitao M, Kitaoka S, Maruyama Y, Utsugi H (2011) Effects of elevated [CO2] and soil nutrients and water conditions on photosynthetic and growth responses of Alnus hirsuta. Funct Plant Biol 38:702–710

    CAS  Google Scholar 

  • Uliassi DD, Ruess RW (2002) Limitation to symbiotic nitrogen fixation in primary succession on the Tanana river floodplain. Ecology 83:88–103

    Google Scholar 

  • Valdes M (2008) Frankia ecology. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbiosis. Springer, Dordrecht

    Google Scholar 

  • Valverde C, Wall LG (2003) The regulation of nodulation, nitrogen fixation and assimilation under a carbohydrate shortage stress in the Discaria trinervis-Frankia symbiosis. Plant Soil 254:155–165

    CAS  Google Scholar 

  • Valverde C, Ferrari A, Wall LG (2002) Phosphorus and the regulation of nodulation in the actinorhizal symbiosis, between Discaria trinervis (Rhamnaceae) and Frankia BCU110501. New Phytol 153:43–51

    CAS  Google Scholar 

  • Valverde C, Ferrari A, Wall LG (2009) Effects of calcium in the nitrogen-fixing symbiosis between actinorhizal Discaria trinervis (Rhamnaceae) and Frankia. Symbiosis 49:151–155

    CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Google Scholar 

  • Vogel CS, Curtis PS, Thomas RB (1997) Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide. Plant Ecol 130:63–70

    Google Scholar 

  • Wall LG, Hellsten A, Huss-Danell K (2000) Nitrogen, phosphorus, and the ratio between them affect nodulation in Alnus incana and Trifolium pratense. Symbiosis 29:91–105

    Google Scholar 

  • Wall LG, Valverde C, Huss-Danell K (2003) Regulation of nodulation in the absence of N2 is different in actinorhizal plants with different infection pathways. J Exp Bot 54:1253–1258

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Tobita H, Kitao M, Maruyama Y, Choi D, Sasa K, Funada R, Koike T (2008) Effects of elevated CO2 and nitrogen on wood structure related to water transport in seedlings of two deciduous broad-leaved tree species. Trees 22:403–411

    CAS  Google Scholar 

  • Wheeler CT, Hughes LT, Oldroyd J, Pulford ID (2001) Effects of nickel on Frankia and its symbiosis with Alnus glutinosa (L.) Gaertn. Plant Soil 231:81–90

    CAS  Google Scholar 

  • Wittig VG, Ainthworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162

    PubMed  CAS  Google Scholar 

  • Yamanaka T, Akama K (2010) Effects of Alpova inoculation on the growth of Alnus sieboldiana and A. hirsuta. Kanto J For Res 61:149–150 (in Japanese)

    Google Scholar 

  • Yamanaka T, Okabe H (2008) Actinorhizal plants and Frankia in Japan. Bull FFPRI 7:67–80 (In Japanese with English summary)

    Google Scholar 

  • Yamanaka T, Li CY, Bormann BT, Okabe H (2003) Tripartite associations in an alder: effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil 254:179–186

    CAS  Google Scholar 

  • Yamanaka T, Akama A, Li CY, Okabe H (2005) Growth, nitrogen fixation and mineral acquisition of Alnus sieboldiana after inoculation of Frankia together with Gigaspora margarita and Pseudomonas putida. J For Res 10:21–26

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Tobita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tobita, H., Kucho, Ki., Yamanaka, T. (2013). Abiotic Factors Influencing Nitrogen-Fixing Actinorhizal Symbioses. In: Aroca, R. (eds) Symbiotic Endophytes. Soil Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39317-4_6

Download citation

Publish with us

Policies and ethics