Skip to main content

Generation of Trajectories Using Predictive Control for Tracking Consensus with Sensing and Connectivity Constraint

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 507))

Abstract

This work presents a cooperation strategy for teams of multiple autonomous vehicles to solve the rendezvous problem. The approach is based on consensus algorithms, which are basically characterized by information exchange among the team members. The proposal is based on predictive control in order to compute decentralized control laws, considering constraints and different response requirements according to the application scenario, for example, constraints related to coverage and connectivity of the group. Our work allows considering together vehicles without and with non-holonomic restrictions while optimizing the sensing range, particularly that of fixed frontal cameras, by managing orientation in the way to the rendezvous point. We show the effectiveness of our strategy with simulation results.

This work was supported in part by CAPES/Brazil (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FCT/Portugal (Fundação para Ciência e Tecnologia)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–234 (2007)

    Google Scholar 

  2. Schurr, N., Okamoto, S., Maheswaran, R., Scerri, P., Tambe, M.: Evolution of a Teamwork Model, Cognitive Modeling and Multi-Agent Interactions. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  3. Murray, R.M.: Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control 129, 571–584 (2007)

    Article  Google Scholar 

  4. Ren, W., Beard, R.W.: Distributed Consensus in Multi-Vehicle Cooperative Control—Theory and Applications. Communications and Control Engineering. Springer, London (2008)

    Google Scholar 

  5. Ren, W.: Consensus tracking under directed interaction topologies: algorithms and experiments. IEEE Trans. Control Syst. Technol. 18, 230–237 (2010)

    Article  Google Scholar 

  6. Ordonez, B., Moreno, U.F., Cerqueira, J., Almeida, L.: Generation of trajectories using predictive control for tracking consensus with sensing. Procedia Comput. Sci. 10, 1094–1099 (2012)

    Google Scholar 

  7. Chatterjee, S., Seneta, E.: Towards consensus: some convergence theorems on repeated averaging. J. Appl. Probab. 14, 89–97 (1977)

    Google Scholar 

  8. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974)

    Article  MATH  Google Scholar 

  9. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)

    Google Scholar 

  10. Saber, R.O., Richard, S., Murray, R.M.: Consensus protocols for networks of dynamic agents. In: American Control Conference, Denver, 2003

    Google Scholar 

  11. Lin, Z., Broucke, M., Francis, B.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49, 1465–1476 (2004)

    Google Scholar 

  12. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50, 655–661 (2005)

    Google Scholar 

  13. Beard, R.W., McLain, T.W., Nelson, D., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. In: Proc. IEEE 94, 1306–1324 (2006)

    Google Scholar 

  14. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. In: IEEE Conference on Decision and Control, Atlantis, 2004

    Google Scholar 

  15. Decastro, G.A., Paganini, F.: Convex synthesis of controllers for consensus. In: American Control Conference, Boston, 2004

    Google Scholar 

  16. Dunbar, W., Murray, R.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42, 549–558 (2006)

    Google Scholar 

  17. Bauso, D., Giarre, L., Pesenti, R.: Mechanism design for optimal consensus problems. In: IEEE Conference on Decision and Control, San Diego, 2006

    Google Scholar 

  18. Semsar-Kazerooni, E., Khorasan, K.: Optimal consensus algorithms for cooperative team of agents subject to partial information. Automatica 44, 2766–2777 (2008)

    Article  MATH  Google Scholar 

  19. Listmann, K.D., Masalawala, M.V., Adamy, J.: Consensus for formation control of nonholonomic mobile robots. In: IEEE International Conference on Robotics and Automation, New Jersey, 2009

    Google Scholar 

  20. Semsar-Kazerooni, E., Khorasani, K.: An LMI approach to optimal consensus seeking in multi-agent systems. In: American Control Conference, St. Louis, 2009

    Google Scholar 

  21. Jakovetic, D., Xavier, J., Moura, J.: Weight optimization for consensus algorithms with correlated switching topology. IEEE Trans. Signal Process. 58, 3788–3801 (2010)

    Google Scholar 

  22. Cao, Y., Ren, W.: Optimal linear-consensus algorithms: an LQR perspective. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40, 819–830 (2010)

    Google Scholar 

  23. Kuwata, Y., How, J.P.: Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Trans. Control Syst. Technol. 19, 423–431 (2010)

    Google Scholar 

  24. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49, 1465–1476 (2004)

    Google Scholar 

  25. Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27, 71–82 (2007)

    Google Scholar 

  26. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Ordoñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ordoñez, B., Moreno, U.F., Cerqueira, J., Almeida, L. (2014). Generation of Trajectories Using Predictive Control for Tracking Consensus with Sensing and Connectivity Constraint. In: Koubâa, A., Khelil, A. (eds) Cooperative Robots and Sensor Networks. Studies in Computational Intelligence, vol 507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39301-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39301-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39300-6

  • Online ISBN: 978-3-642-39301-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics