Skip to main content

Universal Gates in Other Universes

  • Conference paper
Reversible Computation (RC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7948))

Included in the following conference series:

  • 1028 Accesses

Abstract

I describe a new formalization for computation which is similar to traditional circuit models but which depends upon the choice of a family of [semi]groups – essentially, a choice of the structure group of the universe of the computation. Choosing the symmetric groups results in the reversible version of classical computation; the unitary groups give quantum computation. Other groups can result in models which are stronger or weaker than the traditional models, or are hybrids of classical and quantum computation.

One particular example, built out of the semigroup of doubly stochastic matrices, yields classical but probabilistic computation, helping explain why probabilistic computation can be so fast. Another example is a smaller and entirely ℝeal version of the quantum one which uses a (real) rotation matrix in place of the (complex, unitary) Hadamard gate to create algorithms which are exponentially faster than classical ones.

I also articulate a conjecture which would help explain the different powers of these different types of computation, and point to many new avenues of investigation permitted by this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenco, A.: A universal two-bit gate for quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 449(1937), 679–683 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52(5), 3457 (1995)

    Article  Google Scholar 

  3. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  4. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A 5, 147–151 (1946)

    MathSciNet  MATH  Google Scholar 

  5. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer (1998)

    Google Scholar 

  6. Brylinski, J.L., Brylinski, R.: Universal quantum gates. Mathematics of Quantum Computation, 101–116 (2002)

    Google Scholar 

  7. Coecke, B.: New structures for physics, vol. 813. Springer (2010)

    Google Scholar 

  8. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 400(1818), pp. 97–117 (1985)

    Google Scholar 

  9. Deutsch, D., Jozsa, R., Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London, vol. 439(1907), pp. 553–558 (1992)

    Google Scholar 

  10. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Physical Review A 51(2), 1015 (1995)

    Article  MathSciNet  Google Scholar 

  11. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21(3), 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Juels, A., Jakobsson, M., Shriver, E., Hillyer, B.K.: How to turn loaded dice into fair coins. IEEE Transactions on Information Theory 46(3), 911–921 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lloyd, S.: Almost any quantum logic gate is universal. Physical Review Letters 75(2), 346–349 (1995)

    Article  MathSciNet  Google Scholar 

  14. Minc, H.: Nonnegative matrices. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, New York (1988)

    MATH  Google Scholar 

  15. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2010)

    Google Scholar 

  16. Shaltiel, R.: Recent developments in explicit constructions of extractors. Current Trends in Theoretical Computer Science: Algorithms and Complexity 1, 189 (2004)

    Google Scholar 

  17. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, Springer, Heidelberg (1980)

    Google Scholar 

  18. Von Neumann, J.: Various techniques used in connection with random digits. Applied Math. Series 12, 36–38 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poritz, J.A. (2013). Universal Gates in Other Universes. In: Dueck, G.W., Miller, D.M. (eds) Reversible Computation. RC 2013. Lecture Notes in Computer Science, vol 7948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38986-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38986-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38985-6

  • Online ISBN: 978-3-642-38986-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics