Skip to main content

Stochastic Model of a Metastability-Based True Random Number Generator

  • Conference paper
Trust and Trustworthy Computing (Trust 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7904))

Included in the following conference series:

Abstract

True random number generator (TRNG) designers should provide a stochastic model of the target of evaluation to be compliant with the AIS-31 standard evaluation process. In this paper, we present a model of a TRNG that extracts its randomness from the metastable behavior of a D-Latch. Such a model needs to be set up for the TRNG evaluation process. In this work, we describe and analyse the randomness coming from a chain of D-Latches when set near their metastable state. Then, we present a physical model of a metastability-based TRNG. The main novelty of this paper is the stochastic modeling process of a metastability-based TRNG. The presented model is validated on FPGA and a 65nm CMOS technology prototype chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NIST: Recommendation for the entropy sources used for random bit generation (2012), http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

  2. Schindler, W., Killmann, W.: A proposal for: Functionality classes for random number generators1 (September 2011)

    Google Scholar 

  3. Federal Information Processing Standards (FIPS) Publication 140-2. Security requirements for cryptographic modules (May 25, 2001), http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

  4. Mandal, M.K., Sarkar, B.C.: Ring oscillators: Characteristics and applications. Indian Journal of Pure and Applied Physics 48, 136–145 (2010)

    Google Scholar 

  5. Korkmaz, P., Akgul, B.E.S., Palem, K.V.: Characterizing the behavior of a probabilistic cmos switch through analytical models and its verification through simulations (2005)

    Google Scholar 

  6. Simka, M., Drutarovsky, M., Fischer, V., Fayolle, J.: Model of a true random number generator aimed at cryptographic applications. In: Proceedings of the 2006 IEEE International Symposium on Circuits and Systems, ISCAS 2006, p. 4 (May 2006)

    Google Scholar 

  7. Killmann, W., Schindler, W.: A design for a physical RNG with robust entropy estimators. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 146–163. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Xu, P., Horiuchi, T., Abshire, P.: Stochastic model and simulation of a random number generator circuit. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008, pp. 2977–2980 (May 2008)

    Google Scholar 

  9. Kinniment, D.J., Chester, E.G.: Design of an on-chip random number generator using metastability. In: Proceedings of the 28th European Solid-State Circuit Conference (2002)

    Google Scholar 

  10. Danger, J.-L., Guilley, S., Hoogvorst, P.: High Speed True Random Number Generator based on Open Loop Structures in FPGAs. Microelectronics Journal 40(11), 1650–1656 (2009), doi:10.1016/j.mejo.2009.02.004

    Article  Google Scholar 

  11. Suresh, V.B., Burleson, W.P.: Entropy extraction in metastability-based TRNG. In: HOST, pp. 135–140 (2010)

    Google Scholar 

  12. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA-based true random number generation using circuit metastability with adaptive feedback control. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 17–32. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Hata, H., Ichikawa, S.: Fpga implementation of metastability-based true random number generator. IEICE Transactions 95-D(2), 426–436 (2012)

    Google Scholar 

  14. Chen, D., Singh, D., Chromczak, J., Lewis, D., Fung, R., Neto, D., Betz, V.: A comprehensive approach to modeling, characterizing and optimizing for metastability in fpgas. In: Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA 2010, pp. 167–176. ACM, New York (2010)

    Chapter  Google Scholar 

  15. Ginosar, R.: Metastability and synchronizers: A tutorial. IEEE Design Test of Computers 28(5), 23–35 (2011)

    Article  Google Scholar 

  16. Veendrick, H.J.M.: The behaviour of flip-flops used as synchronizers and prediction of their failure rate. IEEE Journal of Solid-State Circuits 15(2), 169–176 (1980)

    Article  Google Scholar 

  17. Trotter, H.F.: An elementary proof of the central limit theorem. Archiv der Mathematik 10, 226–234 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben-Romdhane, M., Graba, T., Danger, JL. (2013). Stochastic Model of a Metastability-Based True Random Number Generator. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I., Coles-Kemp, L. (eds) Trust and Trustworthy Computing. Trust 2013. Lecture Notes in Computer Science, vol 7904. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38908-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38908-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38907-8

  • Online ISBN: 978-3-642-38908-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics