Skip to main content

Fast Algorithm for Partial Covers in Words

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7922))

Abstract

A factor u of a word w is a cover of w if every position in w lies within some occurrence of u in w. A word w covered by u thus generalizes the idea of a repetition, that is, a word composed of exact concatenations of u. In this article we introduce a new notion of partial cover, which can be viewed as a relaxed variant of cover, that is, a factor covering at least a given number of positions in w. Our main result is an O(nlogn)-time algorithm for computing the shortest partial covers of a word of length n.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings. Theor. Comput. Sci. 119(2), 247–265 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for strings. Inf. Process. Lett. 39(1), 17–20 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Moore, D., Smyth, W.F.: An optimal algorithm to compute all the covers of a string. Inf. Process. Lett. 50(5), 239–246 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6), 345–347 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1), 95–106 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press (2007)

    Google Scholar 

  7. Flouri, T., Iliopoulos, C.S., Kociumaka, T., Pissis, S.P., Puglisi, S.J., Smyth, W.F., Tyczyński, W.: New and efficient approaches to the quasiperiodic characterisation of a string. In: Holub, J., Žďárek, J. (eds.) PSC, pp. 75–88. Czech Technical University in Prague, Czech Republic (2012)

    Google Scholar 

  8. Sim, J.S., Park, K., Kim, S., Lee, J.: Finding approximate covers of strings. Journal of Korea Information Science Society 29(1), 16–21 (2002)

    Google Scholar 

  9. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2003)

    Google Scholar 

  10. Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS, pp. 137–143 (1997)

    Google Scholar 

  11. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Apostolico, A., Preparata, F.P.: Data structures and algorithms for the string statistics problem. Algorithmica 15(5), 481–494 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brodal, G.S., Lyngsø, R.B., Östlin, A., Pedersen, C.N.S.: Solving the string statistics problem in time \(\mathcal{O}(n\log n)\). In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 728–739. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb. Theory, Ser. A 82(1), 112–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brodal, G.S., Pedersen, C.N.S.: Finding maximal quasiperiodicities in strings. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 397–411. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Brown, M.R., Tarjan, R.E.: A fast merging algorithm. J. ACM 26(2), 211–226 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting powers and periods in a string from its runs structure. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear time algorithm for seeds computation. In: Rabani, Y. (ed.) SODA, pp. 1095–1112. SIAM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Waleń, T. (2013). Fast Algorithm for Partial Covers in Words. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38905-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38904-7

  • Online ISBN: 978-3-642-38905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics