Skip to main content

Micro Continuous-Flow Synthesis of Metal Nanoparticles Using Micro Fluid Segment Technology

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The micro segmented flow technique is very promising for the synthesis of metal nanoparticles, in particular for plasmonic nanoparticles and is very useful for combinatorial syntheses and screenings of new types of nanomaterials. In this chapter, the specific properties and technical as well as scientific challenges related to metal nanoparticles, the advantages of micro segmented flow and draw-backs of conventional synthesis for metal nanoparticles as well as the general applicability and the potential for the application of micro segmented flow for the preparation of metal and semiconductor nanoparticles are discussed. The specific conditions of micro segmented flow are described relating to the critical steps of reactant mixing, nucleation, and particle growth. It is shown that the intensification of local transport in the microfluidic system causes a significant improvement in particle homogeneity. In the formation and handling of metal particles, aspects of redox reactions, electrochemical parameters, and aspects of coordination chemistry have to be reconsidered. Ligands, which are able to interact with the metal ions in solution or with the forming nanoparticles, have a strong effect on the particle formation, their transport behavior, and interaction. The effect of fast reactant mixing supported by intensive segment-internal convection due to high flow rates is used in order to obtain uniform conditions for nucleation as well as for the particle growth. It is explained why non-spherical particles are of particular interest for different applications and how their quality can be improved by the application of microfluidic synthesis techniques, too. The formation of silver prisms by a micro continuous-flow synthesis in micro fluid segments will be given as a typical example allowing the tuning of the optical properties of the colloidal solutions. Finally, it is demonstrated that the micro segmented flow technique is well suited for an automated variation of composition of reactant mixtures. Thus, it is possible to screen a large quantity of different compositions in one single experimental run, combined with a minimum of consumed chemicals. The integration of miniaturized optical devices allows an online monitoring and the real-time detection of the effect of changing transport and reaction conditions on the properties of synthesized nanomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Zhao, L.J. Sherry, G.C. Schatz, R.P. Van Duyne, Molecular plasmonics: Chromophore-Plasmon coupling and single-particle nanosensors. Ieee J. Sel. Top. Quant. 14, 1418–1429 (2008)

    Article  Google Scholar 

  2. M. Muniz-Miranda, SERS-active Ag/SiO2 colloids: photoreduction mechanism of the silver ions and catalytic activity of the colloidal nanoparticles. J. Raman Spectrosc. 35, 839–842 (2004)

    Article  ADS  Google Scholar 

  3. K. Liszewski, Applying nanoparticles as molecular tags—fundamental shift in biological labeling. Genet. Eng. News 21, 9–10 (2001)

    Google Scholar 

  4. J.M. Köhler, L. Abahmane, J. Wagner, J. Albert, G. Mayer, Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors. Chem. Eng. Sci. 63, 5048–5055 (2008)

    Google Scholar 

  5. K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, Optical antennas: resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003)

    Article  ADS  Google Scholar 

  6. L. Abahmane, J.M. Köhler, G.A. Gross, Gold-Nanoparticle-Catalyzed Synthesis of Propargylamines: the traditional A(3)-Multicomponent reaction performed as a two-step flow process. Chem-Eur. J. 17, 3005–3010 (2011)

    Google Scholar 

  7. M. Homberger, U. Simon, On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philos. T R Soc. A 368, 1405–1453 (2010)

    Article  ADS  Google Scholar 

  8. Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009)

    Article  Google Scholar 

  9. C.X. Zhao, L.Z. He, S.Z. Qiao, A.P.J. Middelberg, Nanoparticle synthesis in microreactors. Chem. Eng. Sci. 66, 1463–1479 (2011)

    Article  Google Scholar 

  10. C.A. Serra, Z.Q. Chang, Microfluidic-assisted synthesis of polymer particles. Chem. Eng. Technol. 31, 1099–1115 (2008)

    Article  Google Scholar 

  11. K. Mallick, M.J. Witcomb, A. Dinsmore, M.S. Scurrell, Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route. Langmuir 21, 7964–7967 (2005)

    Article  Google Scholar 

  12. S. Li, G.A. Gross, P.M. Gunther, J.M. Köhler, Hydrothermal micro continuous-flow synthesis of spherical, cylinder-, star- and flower-like ZnO microparticles. Chem. Eng. J. 167, 681–687 (2011)

    Google Scholar 

  13. H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M.A. Sullan, G.C. Walker, E. Kumacheva, Microfluidic production of biopolymer microcapsules with controlled morphology. J. Am. Chem. Soc. 128, 12205–12210 (2006)

    Article  Google Scholar 

  14. J.I. Park, A. Saffari, S. Kumar, A. Gunther, E. Kumacheva, Microfluidic synthesis of polymer and inorganic particulate materials. Ann. Rev. Mater. Res. 40, 415–443 (2010)

    Google Scholar 

  15. X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 78, 99–104 (2003)

    Article  ADS  Google Scholar 

  16. T.H. Ha, H.J. Koo, B.H. Chung, Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C 111, 1123–1130 (2007)

    Article  Google Scholar 

  17. U. Kreibig, L. Genzel, Optical-absorption of small metallic particles. Surf. Sci. 156, 678–700 (1985)

    Article  ADS  Google Scholar 

  18. U. Kreibig, Systems of small metal particles—optical-properties and their structure dependences. Z. Phys. D Atom. Mol. Cl. 3, 239–249 (1986)

    Article  ADS  Google Scholar 

  19. A. Pinchuk, U. Kreibig, A. Hilger, Optical properties of metallic nanoparticles: influence of interface effects and interband transitions. Surf. Sci. 557, 269–280 (2004)

    Article  ADS  Google Scholar 

  20. S.K. Dondapati, M. Ludemann, R. Muller, S. Schwieger, A. Schwemer, B. Handel, D. Kwiatkowski, M. Djiango, E. Runge, T.A. Klar, Voltage-induced adsorbate damping of single gold nanorod plasmons in Aqueous solution. Nano. Lett. 12, 1247–1252 (2012)

    Article  ADS  Google Scholar 

  21. A.J. Frank, N. Cathcart, K.E. Maly, V. Kitaev, Synthesis of silver nanoprisms with variable size and investigation of their optical properties: a first-year undergraduate experiment exploring plasmonic nanoparticles. J. Chem. Educ. 87, 1098–1101 (2010)

    Article  Google Scholar 

  22. A.I. Henry, J.M. Bingham, E. Ringe, L.D. Marks, G.C. Schatz, R.P. Van Duyne, Correlated structure and optical property studies of plasmonic nanoparticles. J. Phys. Chem. C 115, 9291–9305 (2011)

    Article  Google Scholar 

  23. N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, L.M. Liz-Marzan, Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances. J. Phys. Chem. B 108, 8751–8755 (2004)

    Article  Google Scholar 

  24. L.J. Sherry, R.C. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano. Lett. 6, 2060–2065 (2006)

    Article  ADS  Google Scholar 

  25. K. Konig, I. Riemann, W. Fritzsche, Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Optic. Lett. 26, 819–821 (2001)

    Article  ADS  Google Scholar 

  26. X. Le Guevel, F.Y. Wang, O. Stranik, R. Nooney, V. Gubala, C. McDonagh, B.D. MacCraith, Synthesis. Stabilization, and functionalization of silver nanoplates for biosensor applications. J. Phys. Chem. C 113, 16380–16386 (2009)

    Article  Google Scholar 

  27. J. Reichert, A. Csaki, J.M. Köhler, W. Fritzsche, Chip-based optical detection of DNA hybridization by means of nanobead labeling. Anal. Chem. 72, 6025–6029 (2000)

    Google Scholar 

  28. J. Wagner, J.M. Köhler, Continuous synthesis of gold nanoparticles in a microreactor. Nano. Lett. 5, 685–691 (2005)

    Google Scholar 

  29. Y.J. Song, J. Hormes, C.S.S.R. Kumar, Microfluidic synthesis of nanomaterials. Small 4, 698–711 (2008)

    Article  Google Scholar 

  30. L. Frenz, A. El Harrak, M. Pauly, S. Begin-Colin, A.D. Griffiths, J.-C. Baret, Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 47, 6817–6820 (2008)

    Article  Google Scholar 

  31. S. Duraiswamy, S.A. Khan, Droplet-based microfluidic synthesis of anisotropic metal nanocrystals. Small 5, 2828–2834 (2009)

    Article  Google Scholar 

  32. A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, P. Bowen, Precipitation of nanosized and nanostructured powders: process intensification and scale-out using a Segmented Flow Tubular Reactor (SFTR). Chem. Eng. Technol. 34, 344–352 (2011)

    Article  Google Scholar 

  33. R.L. Hartman, J.R. Naber, N. Zaborenko, S.L. Buchwald, K.F. Jensen, Overcoming the challenges of solid bridging and constriction during Pd-Catalyzed C-N bond formation in microreactors. Org. Process Res. Dev. 14, 1347–1357 (2010)

    Article  Google Scholar 

  34. C. de Bellefon, N. Tanchoux, S. Caravieilhes, P. Grenouillet, V. Hessel, Microreactors for dynamic, high throughput screening of fluid/liquid molecular catalysis. Angew. Chem. Int. Ed. 39, 3442-+ (2000)

    Google Scholar 

  35. J.W. Kim, A.S. Utada, A. Fernandez-Nieves, Z.B. Hu, D.A. Weitz, Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem. Int. Ed. 46, 1819–1822 (2007)

    Article  Google Scholar 

  36. S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H.A. Stone, P. Garstecki, D.B. Weibel, I. Gitlin, G.M. Whitesides, Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition (vol. 44, p. 724 2005). Angew. Chem. Int. Ed. 44(2005), 3799–3799 (2005)

    Article  Google Scholar 

  37. V. Bansal, V. Li, A.P. O’Mullane, S.K. Bhargava, Shape dependent electrocatalytic behaviour of silver nanoparticles. Crystengcomm 12, 4280–4286 (2010)

    Article  Google Scholar 

  38. K.P. Charle, F. Frank, W. Schulze, The optical-properties of silver microcrystallites in dependence on size and the influence of the matrix environment. Ber. Bunsen. Phys. Chem. 88, 350–354 (1984)

    Article  Google Scholar 

  39. A.K. Singh, D. Senapati, A. Neely, G. Kolawole, C.J. Hawker, P.C. Ray, Nonlinear optical properties of triangular silver nanomaterials. Chem. Phys. Lett. 481, 94–98 (2009)

    Article  ADS  Google Scholar 

  40. G.P. Lee, A.I. Minett, P.C. Innis, G.G. Wallace, A new twist: controlled shape-shifting of silver nanoparticles from prisms to discs. J. Mater. Chem. 19, 8294–8298 (2009)

    Article  Google Scholar 

  41. W.Z. Lai, W. Zhao, R. Yang, X.G. Li, Preparation and optical properties of triangular silver nanoplates by a dual-reduction method. Acta. Phys. Chim. Sin. 26, 1177–1183 (2010)

    Google Scholar 

  42. Y. Chen, C.G. Wang, Z.F. Ma, Z.M. Su, Controllable colours and shapes of silver nanostructures based on pH: application to surface-enhanced Raman scattering. Nanotechnology 18, 325–602 (2007)

    Google Scholar 

  43. C. Xue, G.S. Metraux, J.E. Millstone, C.A. Mirkin, Mechanistic study of photomediated triangular silver nanoprism growth. J. Am. Chem. Soc. 130, 8337–8344 (2008)

    Article  Google Scholar 

  44. J. Polte, T.T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A.F. Thunemann, R. Kraehnert, Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled In Situ XANES and SAXS evaluation. J. Am. Chem. Soc. 132, 1296–1301 (2010)

    Article  Google Scholar 

  45. A. Fernandez-Nieves, F.J.D. Nieves, The role of zeta potential in the colloidal stability of different TiO2/electrolyte solution interfaces. Colloid Surf. A 148, 231–243 (1999)

    Article  Google Scholar 

  46. M. Mirnik, Electric potential in theories of colloid stability. Kolloid Z Z Polym. 185, 66 (1962)

    Google Scholar 

  47. J. Boleininger, A. Kurz, V. Reuss, C. Sonnichsen, Microfluidic continuous flow synthesis of rod-shaped gold and silver nanocrystals. Phys. Chem. Chem. Phys. 8, 3824–3827 (2006)

    Article  Google Scholar 

  48. D. Aherne, D.M. Ledwith, M. Gara, J.M. Kelly, Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 18, 2005–2016 (2008)

    Article  Google Scholar 

  49. M.L. Personick, M.R. Langille, J. Zhang, C.A. Mirkin, Shape control of gold nanoparticles by silver underpotential deposition. Nano. Lett. 11, 3394–3398 (2011)

    Article  Google Scholar 

  50. A. Knauer, N. Visaveliya, J.M. Koehler, Spontaneous transformation of polyelectrolyte-stabilized silver nanoprisms by interaction with thiocyanate. J. Colloid Interface Sci. 394, 78–84 (2013)

    Article  Google Scholar 

  51. A. Knauer, A. Csaki, F. Moller, C. Huhn, W. Fritzsche, J.M. Köhler, Microsegmented flow-through synthesis of silver nanoprisms with exact tunable optical properties. J. Phys. Chem. C 116, 9251–9258 (2012)

    Google Scholar 

  52. D. Malsch, M. Kielpinski, R. Merthan, J. Albert, G. Mayer, J.M. Köhler, H. Susse, M. Stahl, T. Henkel, mu PIV—analysis of taylor flow in micro channels. Chem. Eng. J. 135, S166–S172 (2008)

    Google Scholar 

  53. X.Y. Dong, X.H. Ji, J. Jing, M.Y. Li, J. Li, W.S. Yang, Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J. Phys. Chem. C 114, 2070–2074 (2010)

    Article  Google Scholar 

  54. R.C. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001)

    Article  ADS  Google Scholar 

  55. X.M. Wu, P.L. Redmond, H.T. Liu, Y.H. Chen, M. Steigerwald, L. Brus, Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. J. Am. Chem. Soc. 130, 9500–9506 (2008)

    Article  Google Scholar 

  56. A. Knauer, A. Thete, S. Li, H. Romanus, A. Csaki, W. Fritzsche, J.M. Koehler, Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis. Chem. Eng. J. 166, 1164–1169 (2011)

    Article  Google Scholar 

  57. B. Rodriguez-Gonzalez, A. Burrows, M. Watanabe, C.J. Kiely, L.M. Liz-Marzan, Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties. J. Mater. Chem. 15, 1755–1759 (2005)

    Article  Google Scholar 

  58. J.L. Cao, D. Kursten, S. Schneider, A. Knauer, P.M. Gunther, J.M. Köhler, Uncovering toxicological complexity by multi-dimensional screenings in microsegmented flow: modulation of antibiotic interference by nanoparticles. Lab. Chip. 12, 474–484 (2012)

    Google Scholar 

  59. A. Funfak, J.L. Cao, A. Knauer, K. Martin, J.M. Köhler, Synergistic effects of metal nanoparticles and a phenolic uncoupler using microdroplet-based two-dimensional approach. J. Environ. Monitor. 13, 410–415 (2011)

    Google Scholar 

  60. M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783–1791 (2008)

    Article  Google Scholar 

  61. A. Knauer, J.M. Koehler, Screening of Multiparameter Spaces for Silver Nanoprism Synthesis by Micro segmented Flow Technique. Chem. Ing. Technik 85(4), 467–475 (2013)

    Google Scholar 

  62. A. Knauer, S. Schneider, F. Möller, A. Csáki, W. Fritzsche, J.M. Koehler, Screening of plasmonic properties of composed metal nanoparticles by combinatorial synthesis in micro-fluid segment sequences. Chem. Eng. J. 227, 80–89 (2013)

    Google Scholar 

  63. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700–15707 (2006)

    Article  Google Scholar 

  64. J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 11, 55–75 (1951)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding from the DFG (FKK. 1403/22-1). The help of Henry Romanus with TEM measurements is highly appreciated. Furthermore, we would like to thank Frances Möller and Steffen Schneider for their technical support. A special gratitude for the useful discussions is also addressed to our colleagues from the IPHT Jena, Wolfgang Fritzsche and Andrea Csáki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Knauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knauer, A., Köhler, J.M. (2014). Micro Continuous-Flow Synthesis of Metal Nanoparticles Using Micro Fluid Segment Technology. In: Köhler, J., Cahill, B. (eds) Micro-Segmented Flow. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38780-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38780-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38779-1

  • Online ISBN: 978-3-642-38780-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics