Skip to main content

Model Probability in Self-organising Maps

  • Conference paper
  • 2331 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7903))

Abstract

Growing models have been widely used for clustering or topology learning. Traditionally these models work on stationary environments, grow incrementally and adapt their nodes to a given distribution based on global parameters. In this paper, we present an enhanced unsupervised self-organising network for the modelling of visual objects. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelopoulou, A., García, J., Psarrou, A., Gupta, G.: Tracking gestures using a probabilistic self-organising network. In: Proc. of the International Joint Conference on Neural Networks, IJCNN 2010, pp. 1–7 (2010)

    Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, vol. I, pp. 886–893 (2005)

    Google Scholar 

  3. Fritzke, B.: Growing Cell Structures - a self-organising network for unsupervised and supervised learning. The Journal of Neural Networks 7(9), 1441–1460 (1994)

    Article  Google Scholar 

  4. Fritzke, B.: A growing Neural Gas Network Learns Topologies. In: Advances in Neural Information Processing Systems 7 (NIPS 1994), pp. 625–632 (1995)

    Google Scholar 

  5. García-Rodríguez, J., Angelopoulou, A., García-Chamizo, J.M., Psarrou, A., Escolano, S.O., Giménez, V.M.: Autonomous Growing Neural Gas for applications with time constraint: Optimal parameter estimation. Neural Networks 32, 196–208 (2012)

    Article  Google Scholar 

  6. Gupta, G., Psarrou, A., Angelopoulou, A., García, J.: Region analysis through close contour transformation using growing neural gas. In: Proc. of the International Joint Conference on Neural Networks, IJCNN 2012, pp. 1–8 (2012)

    Google Scholar 

  7. Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recongition 40(3), 1106–1122 (2007)

    Article  MATH  Google Scholar 

  8. Kruppa, H.: Object Detection using Scale-specific Boosted Parts and a Bayesian Combiner. PhD Thesis, ETH Zrich (2004)

    Google Scholar 

  9. Kruppa, H., Santana, C., Sciele, B.: Fast and Robust Face Finding via Local Context. In: Proc. of the IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 157–164 (2003)

    Google Scholar 

  10. Lee, M., Nevatia, R.: Integrating Component Cues for Human Pose Estimation. In: Proc. of the IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 41–48 (2005)

    Google Scholar 

  11. Leibe, B., Seemann, E., Sciele, B.: Pedestrian Detection in Crowded Scenes. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, vol. I, pp. 878–885 (2005)

    Google Scholar 

  12. Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual detectors using co-training. In: Proc. of the IEEE International Conference on Computer Vision, vol. I, pp. 626–633 (2003)

    Google Scholar 

  13. Martinez, T., Schulten, K.: Topology Representing Networks. The Journal of Neural Networks 7(3), 507–522 (1994)

    Article  Google Scholar 

  14. Mignotte, M.: Segmentation by fusion of histogram-based k-means clusters in different color spaces. IEEE Trans. on Image Processing 5(17), 780–787 (2008)

    Article  MathSciNet  Google Scholar 

  15. Nair, V., Clark, J.: An Unsupervised, Online Learning Framework for Moving Object Detection. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recongition, vol. II, pp. 317–324 (2004)

    Google Scholar 

  16. Papageorgiou, C., Oren, M., Poggio, T.: A General Framework for Object Detection. In: Proc. of the IEEE International Conference on Computer Vision, pp. 555–562 (1998)

    Google Scholar 

  17. Rissanen, J.: Modelling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  18. Sivic, J., Everingham, M., Zisserman, A.: Person Spotting: Video Shot Retrieval for Face Sets. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 226–236. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angelopoulou, A., Psarrou, A., García-Rodríguez, J., Mentzelopoulos, M., Gupta, G. (2013). Model Probability in Self-organising Maps. In: Rojas, I., Joya, G., Cabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38682-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38682-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38681-7

  • Online ISBN: 978-3-642-38682-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics