Skip to main content

Soil–Sediment–River Connections: Catchment Processes Delivering Pressures to River Catchments

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 29))

Abstract

This chapter presents and discusses the soil–sediment–river connections and summarises the pressures at the basin scale from their causes (natural and anthropogenic drivers) to their consequences (impacts on biophysical status). Nine important pressures on river basins are evidenced with respect to their temporal and spatial scale of occurrence and their impact on the river basin at the basin scale and concerns: erosion, sealing, compaction, hydromorphological changes, salinisation, contamination, changes in water quantity, acidification and reduction of soil organic matter. Each pressure can affect the biophysical status, and the simultaneous presence of pressures can have cumulative or compensatory impacts on biophysical status through propagation. Eight biophysical statuses were identified (concentration of chemicals, trophic status, biota status, buffering capacity, salinity, suspended matter and sediment, water level, morphology and pedology), and the pressures are described in this chapter in the sense of impacts on these biophysical status.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Granite or basalt rock type formed through the cooling and solidification of magma or lava

  2. 2.

    Arise from the transformation of existing rock types through metamorphism (initial rock subjected to high temperature and pressure causing profound physical and/or chemical change)

  3. 3.

    Formed by the processes of compaction and cementation of sediment over a long period of time

  4. 4.

    See http://www.czen.org/

  5. 5.

    See http://sustainability.gly.bris.ac.uk/soilcritzone/

  6. 6.

    See http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database-4

  7. 7.

    http://eusoils.jrc.ec.europa.eu/library/themes/salinization/

  8. 8.

    See http://www.ipcc.ch/ (IPCC (Intergovernmental Panel of Climate Change), available at http://www.ipcc.ch/; IPCC (2009) Climate change and Water. IPCC reports, 7 Dec 2009, p 200)

  9. 9.

    See http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/ (World Water Assessment Program. Available at http://www.unesco.org/water/wwap/)

  10. 10.

    See http://www.acqwa.ch/; http://www.crue-eranet.net/; http://www.floodsite.net/

  11. 11.

    See http://www.eurolimpacs.ucl.ac.uk/

References

  1. Suchy V, Heijlen W, Sykorova I, Muchez P, Dobes P, Hladikova J, Jackova I, Safanda J, Zeman A (2000) Geochemical study of calcite veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): evidence for widespread post-Variscan fluid flow in the central part of the Bohemian Massif. Sedim Geol 131:201–219

    Article  CAS  Google Scholar 

  2. Morad S, Al-Aasm IS, Sirat M, Sattar MM (2010) Vein calcite in cretaceous carbonate reservoirs of Abu Dhabi: record of origin of fluids and diagenetic conditions. J Geochem Explo 106:156–170

    Article  CAS  Google Scholar 

  3. Allen PA (1997) Earth surface processes. Blackwell Science Ltd Ed. pp 404.

    Google Scholar 

  4. Chapman A, Brils J, Ansink E, Herivaux C, Strosser P (2007) Conceptual models in river basin management. In: Quevauviller PH (eds) Groundwater science & policy—an international overview. RSC (WSF), ISBN: 978-0-85404-294-4, 609–630.

    Google Scholar 

  5. Tijani MN, Okunlola OA, Abimbola AF (2006) Lithogenic concentrations of trace metals in soils and saprolites over crystalline basement rocks: a case study from SW Nigeria. J Afr Earth Sci 46:427–438

    Article  CAS  Google Scholar 

  6. Drever JI (1988) Geochemistry of natural waters. Prentice-Hall Inc, Englewood Cliffs, New Jersey, p 437

    Google Scholar 

  7. Retallack GJ (1990) Soils of the past: an introduction to paleopedology. Harper Collins Academic, London, p 474

    Google Scholar 

  8. Buol SW, Southard RJ, Graham RC, McDaniel PA (2003) Soil genesis and classification. Iowa State University Press, Blackwell, Ames, IA, p 499

    Google Scholar 

  9. Ragnarsdottir KV, Mankasingh U (eds) (2010) Soil research concepts that will underpin European soil sustainability: soil sustainability in Europe as deduced from investigation of the critical zone. EC FP6 GOCE 037092, November 2010, Bristol, UK.

    Google Scholar 

  10. Berner EK, Berner RA (1987) The global water cycle: geochemistry and environment. Prentice-Hall, Englewood Cliffs, NJ, p 396

    Google Scholar 

  11. Gordon N, McMahon TA, Finlayson BL (1992) Stream hydrology. An introduction for ecologists. Wiley, West Sussex, England, p 526

    Google Scholar 

  12. Meybeck M, Ragu A (1997) River discharges to the Oceans: an assessment of suspended solids, major ions and nutrients. United Nations Environment Programme, p 245

    Google Scholar 

  13. Owens PN, Batalla RJ (2003) A first attempt to approximate Europe’s sediment budget. SedNet. EC contract No. EVK1-CT-2001-20002, pp 7

    Google Scholar 

  14. Crutzen P (2002) Geology of mankind. Nature 415:23

    Article  CAS  Google Scholar 

  15. Steffen W, Crutzen PJ, McNeill JR (2007) The anthropocene: are humans now overwhelming the great forces of nature. Ambio 36:614–621

    Article  CAS  Google Scholar 

  16. Zalasiewicz J, Williams M, Steffen W, Crutzen P (2010) The New World of the anthropocene. Environ Sci Technol 2010(44):2228–2231

    Article  CAS  Google Scholar 

  17. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  CAS  Google Scholar 

  18. Meybeck M, Vörösmarty C (2005) Fluvial filtering of land-to-ocean fluxes: from natural Holocene variations to Anthropocene. CR Geoscience 337:107–123

    Article  CAS  Google Scholar 

  19. Raupach MR, Canadell JG (2010) Carbon and the anthropocene. Curr Opin Environ Sustain 2:210–218

    Article  Google Scholar 

  20. Armesto JJ, Manuschevich D, Mora A, Smith-Ramirez C, Rozzi R, Abarzúa AM, Marquet PA (2010) From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27:148–160

    Article  Google Scholar 

  21. Lövbrand E, Stripple J, Wimand B (2009) Earth System governmentality reflections on science in the Anthropocene. Glob Environ Chang 19:7–13

    Article  Google Scholar 

  22. Brils J, Harris B, Barceló D, Blum W, Brack W, Müller-Grabherr D, Négrel P, Ragnarsdottir V, Salomons W, Slob A, Track T, Vegter J, Vermaat JE (2014) Synthesis and Recommendations Towards Risk-Informed River Basin Management. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-informed management of European River Basins. Springer, Heidelberg

    Google Scholar 

  23. Ippolito A, Sala S, Faber JH, Vighi M (2009) Ecological vulnerability analysis: a river basin case study. Sci Total Environ. doi:10.1016/j.scitotenv.2009.10.002

    Google Scholar 

  24. Negus P, Moller G, Blessing J, Davis L, Marshall J, Dobbie M (2009) Stream and Estuary Assessment Program—an assessment framework for riverine ecosystems. Available at www.derm.qld.gov.au/…/seap-framework-rpt.pdf.

  25. Bryan RB (2000) Soil erodibility and processes of water erosion on hillslope. Geomorphology 32:385–415

    Article  Google Scholar 

  26. Wilkinson BH (2005) Humans as geologic agents: a deep time perspective. Geology 33:161–164

    Article  Google Scholar 

  27. Hooke RL (2000) On the history of humans as geomorphic agents. Geology 28:843–846

    Article  Google Scholar 

  28. Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci 104:13268–13272

    Article  CAS  Google Scholar 

  29. Négrel P, Roy S, Petelet-Giraud E, Millot R, Brenot A (2007) Long term fluxes of dissolved and suspended matter in the Ebro River Basin (Spain). J Hydrol 342:249–260

    Article  Google Scholar 

  30. Guillén J, Palanques A (1992) Sediment dynamics and hydrodynamics in the lower course of a river highly regulated by dams: the Ebro River. Sedimentology 39:567–579

    Article  Google Scholar 

  31. Palanques A, Plana F, Maldonado A (1990) Recent influence of man on the Ebro margin sedimentation system, northwestern mediterranean-sea. Mar Geol 95:247–263

    Article  Google Scholar 

  32. Manickam S, Barbaroux L, Ottmann F (1985) Composition and mineralogy of suspended sediment in the fluvio-estuarine zone of the Loire river, France. Sedimentology 32(5):721–742

    Article  CAS  Google Scholar 

  33. Négrel P, Grosbois C (1999) Changes in chemical and 87Sr/86Sr signature distribution patterns of suspended matter and bed sediments in the upper Loire river basin (France). Chem Geol 156:231–249

    Article  Google Scholar 

  34. Roy S, Gaillardet J, Allègre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63:1277–1292

    Article  CAS  Google Scholar 

  35. Probst JL, Bazerbachi A (1986) Transport en solution et en suspension par la Garonne supérieure. Sci Geol Bull 39(1):79–98

    Google Scholar 

  36. Rovira A, Batalla RJ, Sala M (2005) Fluvial sediment budget of a Mediterranean river: the lower Tordera (Catalan Coastal Ranges, NE Spain). Catena 60:19–42

    Article  Google Scholar 

  37. Serrat P, Ludwig W, Navarro B, Blazi JL (2001) Variabilité spatio-temporelle des flux de matières en suspension d'un fleuve côtier méditerranéen : la Têt (France): Spatial and temporal variability of sediment fluxes from a coastal Mediterranean river: the Têt (France). Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 333:389–397

    Google Scholar 

  38. Guillén J, Palanques A (1997) A historical perspective of the morphological evolution in the lower Ebro River. Environ Geol 30:174–180

    Article  Google Scholar 

  39. Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, Gobin A, Vacca A, Quinton J, Auerswald K, Klik A, Kwaad FJPM, Raclot D, Ionita I, Rejman J, Rousseva S, Muxart T, Roxo MJ, Dostal T (2010) Rate and spatial variation of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122:167–177

    Article  Google Scholar 

  40. Bakker MM, Govers G, Rounsevell MDA (2004) The crop productivity-erosion relationship: an analysis based on experimental work. Catena 57:55–76

    Article  Google Scholar 

  41. Evrard O, Bielders CL, Vandaele K et al (2007) Spatial and temporal variation of muddy floods in central Belgium, off-site impacts and potential control measures. Catena 70:443–454

    Article  Google Scholar 

  42. Radoane M, Radoane N (2005) Dams, sediment sources and reservoir silting in Romania. Geomorphology 71:112–125

    Article  Google Scholar 

  43. Haregeweyn N, Poesen J, Nyssen J et al (2006) Reservoirs in Tigray (Northern Ethiopia): characteristics and sediment deposition problems. Land Degrad Develop 17:211–230

    Article  Google Scholar 

  44. Macklin MG, Hudson-Edwards KA, Dawson EJ (1997) The significance of pollution from historic metal mining in the Pennine ore fields on river sediment contaminant fluxes to the North Sea. Sci Total Environ 194–195:391–397

    Article  Google Scholar 

  45. Da Silva EF, Fonseca EC, Matos JX et al (2005) The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface waters of the Lousal area (Iberian Pyrite Belt, southern Portugal). Land Degrad Develop 16:213–228

    Article  Google Scholar 

  46. Duley FL (1939) Surface factors affecting the rate of intake of water by soil. Soil Sci Soc Am Proc 4:60–64

    Article  CAS  Google Scholar 

  47. Assouline S, Ben-Hur M (2006) Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena 66:211–220

    Article  Google Scholar 

  48. Panini T, Torri D, Pellegrini S, Pagliai M, Sanchis MPS (1997) A theoretical approach to soil porosity and sealing development using simulated rainstorms. Catena 31:199–218

    Article  Google Scholar 

  49. Singer MJ, Shainberg I (2004) Mineral soil surface crusts and wind and water erosion. 1st Meeting on significance of soils surface characteristics in soil erosion, sept 2001, Strasbourg France. Earth Surface Processes and Landforms 29; 1065–1075

    Google Scholar 

  50. Singer MJ (2006) Physical degradation of soils. In: Certini C, Scalenghe R (Eds) Soils. Basic concepts and future challenges. Cambridge University Press, Cambridge, EU, pp 223–232

    Google Scholar 

  51. Scalenghe R, Ajmone MF (2009) The anthropogenic sealing of soils in urban areas. Landsc Urban Plan 90:1–10

    Article  Google Scholar 

  52. EEA (European Environment Agency). (2006) Urban Sprawl in Europe. The Ignored Challenge. EEA, København, EU

    Google Scholar 

  53. Vegter J (2007) Urban soils—an emerging problem? J Soils Sediments 7:63–69

    Article  Google Scholar 

  54. Mualem Y, Assouline S (1996) Soil sealing, infiltration and runoff. In: Issar AS, Resnick SD (eds) Runoff, infiltration and subsurface flow of water in arid and semi-arid regions. Water Science and Technology Library. Kluwer, Boston, pp 131–181

    Chapter  Google Scholar 

  55. Assouline S (2004) Rainfall-induced soil surface sealing: a critical review of observations, conceptual models, and solutions. Vad Zone J 3:570–591

    Google Scholar 

  56. Römkens MJM, Prasad SN, Gerits JJP (1997) Soil erosion modes of sealing soils: a phenomenological study. Soil Technol 11:31–41

    Article  Google Scholar 

  57. Singer MJ, Le Bissonnais Y (1998) Importance of surface sealing in the erosion of some soils from a mediterranean climate. Geomorphology 24:79–85

    Article  Google Scholar 

  58. Bhaduri B, Minner M, Tatalovich S, Harbor J (2001) Long-term hydrologic impact of urbanization: a tale of two models. J Water Res Plan Manage 127:13–19

    Article  Google Scholar 

  59. Gaffield SJ, Goo RL, Richards LA, Jackson RJ (2003) Public health effects of inadequately managed stormwater runoff. Am J Public Health 93:1527–1533

    Article  Google Scholar 

  60. Conway TM (2007) Impervious surface as an indicator of pH and specific conductance in the urbanizing coastal zone of New Jersey, USA. J Environ Manage 85:308–316

    Article  CAS  Google Scholar 

  61. Savard JPL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landsc Urban Plan 48:131–142

    Article  Google Scholar 

  62. Soil Science Society of America (1996) Glossary of soil science terms. Madison, WI, USA

    Google Scholar 

  63. Batey T (2009) Soil compaction and soil management—a review. Soil Use Manage 25:335–345

    Article  Google Scholar 

  64. Neve S, Hofman G (2000) Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues. Biol Fertil Soils 30:544–549

    Article  Google Scholar 

  65. Conlin TSS, Driessche R (2000) Response of soil CO2 and O2 concentrations to forest soil compaction at the long-term soil productivity sites in central British Columbia. Can J Soil Sci 80:625–632

    Article  CAS  Google Scholar 

  66. Kozlowski TT (1999) Soil compaction and growth of woody plants. Scandinavian J For Res 14:596–619

    Google Scholar 

  67. Hamzaa MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82:121–145

    Article  Google Scholar 

  68. Batey T, McKenzie DC (2006) Soil compaction: identification directly in the field. Soil Use Manage 22:123–131

    Article  Google Scholar 

  69. Hutchings TR, Moffat AJ, French CJ (2002) Soil compaction under timber harvesting machinery: a preliminary report on the role of brash mats in its prevention. Soil Use Manage 18:34–38

    Article  Google Scholar 

  70. Schack-Kirchner H, Fenner PT, Hildebrand EE (2007) Different responses in bulk density and saturated conductivity to soil deformation by logging machinery on a Ferralsol under native forest. Soil Use Manage 23:286–293

    Article  Google Scholar 

  71. Sinnett D, Poole J, Hutchings TR (2006) The efficacy of three techniques to alleviate soil compaction at a restored sand and gravel quarry. Soil Use Manage 22:362–371

    Article  Google Scholar 

  72. Spoor G (2006) Alleviation of soil compaction: requirements, equipment and techniques. Soil Use Manage 22:113–122

    Article  Google Scholar 

  73. Akker JJH, Canarache A (2001) Two European concerted actions on subsoil compaction. Landnutzung und Landentwicklung 42:15–22

    Google Scholar 

  74. Nawaz MF, Bourrié G, Trolard F (2012) Soil compaction impact and modelling. A review. Agron Sustain Dev. doi:10.1007/s13593-011-0071-8

    Google Scholar 

  75. Owens PN, Batalla RJ, Collins AJ, Gomez B, Hicks DM, Horowitz AJ, Kondolf GM, Marden M, Page MJ, Peacock DH, Petticrew EL, Salomons W, Trustrum NA (2005) Fine-grained sediment in river systems: environmental significance and management issues. River Res Appl 21:693–717

    Article  Google Scholar 

  76. Vaughan IP, Diamond M, Gurnell AM, Hall KA, Jenkins A, Milner NJ, Naylor LA, Sear DA, Woodward G, Ormerod SJ (2009) Integrating ecology with hydromorphology: a priority for river science and management. Aquat Conserv Marine Freshwater Ecosyst 19:113–125

    Article  Google Scholar 

  77. EU Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.

    Google Scholar 

  78. Sear D, Newson M, Hill C, Old J, Branson J (2009) A method for applying fluvial geomorphology in support of catchment-scale river restoration planning. Aquat Conserv-Marine Freshwater Ecosyst 19:506–519

    Article  Google Scholar 

  79. Gilvear DJ, Davids C, Tyler AN (2004) The use of remotely sensed data to detect channel hydromorphology; River Tummel. Scotland River Res Appl 20:795–811

    Article  Google Scholar 

  80. Townsend CR, Hildrew AG (1994) Species traits in relation to a habitat template for river systems. Freshwater Biol 31:265–275

    Article  Google Scholar 

  81. Edwards RW (1968) Some effects of plants and animals on the conditions in fresh-water streams with particular reference to their oxygen balance. In: Proceedings of the International Conference on Water Pollution Research. Pergamon, Oxford, pp 319–333

    Google Scholar 

  82. Souchère V, Cerdan O, Dubreuil N, Le Bissonnais Y, King C (2005) Modelling the impact of agri-environmental scenarios on overland flow in a cultivated catchment (Normandy, France). Catena 61:229–240

    Article  Google Scholar 

  83. von der Ohe PC, Apitz SE, Arbačiauskas K, Beketov MA, Borchardt D, de Zwart D, Goedkoop W, Hein M, Hellsten S, Hering D, Kefford BJ, Panov VE, Schäfer RB, Segner H, van Gils J, Vegter JJ, Wetzel MA, Brack W (2014) Status and causal pathway assessments supporting river basin management. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-informed management of European River Basins. Springer, Heidelberg

    Google Scholar 

  84. SSSA - Terminology Committee (1997) Glossary of soil science terms. Soil Science Society of America, Madison, WI

    Google Scholar 

  85. van Schilfgaarde J (1994) Irrigation—a blessing or a curse. Agric Water Manage 25:203–219

    Article  Google Scholar 

  86. Ghassemi F, Jakeman AJ, Nix H (1995) Salinisation of land and water resources Human causes, extent, management and case studies. CAB international, Wallingford, Oxon, p 526

    Google Scholar 

  87. Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Develop 11:501–521

    Article  Google Scholar 

  88. Causape J, Quilez D, Aragues R (2004) Assessment of irrigation and environmental quality at the hydrological basin level—II. Salt and nitrate loads in irrigation return flows. Agric Water Manage 70:211–228

    Google Scholar 

  89. Petelet-Giraud E, Négrel Ph (2011) Dissolved fluxes of the Ebro River Basin (Spain): impact of main lithologies and role of tributaries. Barcelo D, Petrovic M (eds.), The Ebro River Basin. Springer, Berlin, Heidelberg 2010. Handbook Environmental Chemistry, 13, 97–120

    Google Scholar 

  90. Hu K, Ding P (2009) The effect of deep waterway constructions on hydrodynamics and salinities in Yangtze Estuary, China. J Coast Res 2:961–965

    Google Scholar 

  91. Chubarenko I, Tchepikova I (2001) Modelling of man-made contribution to salinity increase into the Vistula Lagoon (Baltic Sea). Ecol Model 138:87–100

    Article  CAS  Google Scholar 

  92. Concas A, Ardau C, Cristini A, Zuddas P, Cao G (2006) Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere 63:244–253

    Article  CAS  Google Scholar 

  93. Clara M, Gans O, Weiss S, Sanz-Escribano D, Scharf S, Scheffknecht C (2009) Perfluorinated alkylated substances in the aquatic environment: an Austrian case study. Water Res 43:4760–4768

    Article  CAS  Google Scholar 

  94. Dittmar T (2004) Hydrochemical processes controlling arsenic and heavy metal contamination in the Elqui river system (Chile). Sci Total Environ 325:193–207

    Article  CAS  Google Scholar 

  95. Chauhan VS, Nickson RT, Chauhan D, Iyengar L, Sankararamakrishnan N (2009) Ground water geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release. Chemosphere 75:83–91

    Article  CAS  Google Scholar 

  96. Floor GH, Roman-Ross G (2012) Selenium in volcanic environments: a review. Appl Geochem 27:517–531

    Article  CAS  Google Scholar 

  97. Reimann C, Finne TE, Nordgulen O, Saether OM, Arnoldussen A, Banks D (2009) The influence of geology and land-use on inorganic stream water quality in the Oslo region, Norway. Appl Geochem 24:1862–1874

    Article  CAS  Google Scholar 

  98. Gates TK, Cody BM, Donnelly JP, Herting AW, Bailey RT, Mueller Price J (2009) Assessing selenium contamination in the irrigated stream-aquifer system of the arkansas river, colorado. J Environ Qual 38:2344–2356

    Article  CAS  Google Scholar 

  99. Rico M, Benito G, Salgueiro AR, Díez-Herrero A, Pereira HG (2008) Reported tailings dam failures: a review of the European incidents in the worldwide context. J Hazard Mater 152:846–852

    Article  CAS  Google Scholar 

  100. van Griethuysen C, Luitwieler M, Joziasse J, Koelmans AA (2005) Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions. Environ Pollut 137:281–294

    Article  CAS  Google Scholar 

  101. Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  CAS  Google Scholar 

  102. Lohmann R, Breivik K, Dachs J, Muir D (2007) Global fate of POPs: current and future research directions. Environ Pollut 150:150–165

    Article  CAS  Google Scholar 

  103. Polemio M, Senesi N, Bufo SA (1982) Soil contamination by metals: a survey in industrial and rural areas of southern Italy. Sci Total Environ 25:71–79

    Article  CAS  Google Scholar 

  104. Ribeiro C, Pardal MA, Tiritan ME, Rocha E, Margalho RM, Rocha MJ (2009) Spatial distribution and quantification of endocrine-disrupting chemicals in Sado River estuary, Portugal. Environ Monit Assess 159:415–427

    Article  Google Scholar 

  105. Poor CJ, McDonnell JJ (2007) The effects of land use on stream nitrate dynamics. J Hydrol 332:54–68

    Article  Google Scholar 

  106. Meybeck M, Lestel L, Bonté P, Moilleron R, Colin JL, Rousselot O, Hervé D, de Pontevès C, Grosbois C, Thévenot DR (2007) Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950–2005). Sci Total Environ 375:204–231

    Article  CAS  Google Scholar 

  107. Broers HP, van der Grift B (2004) Regional monitoring of temporal changes in groundwater quality. J Hydrol 296:192–220

    Article  CAS  Google Scholar 

  108. Kralik M, Humer F, Loishandl-Weisz H, Grath J (2009) Pilot project groundwater-ages: final report 2008. Environment Agency Austria,. Report 220, pp 174. Available at http://www.umweltbundesamt.at/publikationen/publikationsliste/?&pub_category_id=12.

  109. Daughney CJ, Morgenstern U, van der Raaij R, Reeves RR (2009) Discriminant analysis for estimation of groundwater age from hydrochemistry and well construction: application to New Zealand aquifers. Hydrogeol J 18:1431–2174

    Google Scholar 

  110. AquaTerra (2009) Integrated Modelling of the river-sediment-soil-groundwater system; advanced tools for the management of catchment areas and river basins in the context of global change. Project no. 505428 (GOCE). Final Report, pp 142

    Google Scholar 

  111. Petelet-Giraud E, Négrel P, Gourcy L, Schmidt C, Schirmer M (2007) Geochemical and isotopic constraints on groundwater—surface water interactions in a highly anthropised site. The Wolfen Megasite (Mulde subcatchment, Germany). Environ Pollut 148:707–717

    Article  CAS  Google Scholar 

  112. WELCOME. (2003) Development of integrated management system for prevention and reduction of pollution of water bodies at contaminated industrial sites. http://www.euwelcome.nl/tasks.php.

  113. Joint Danube Survey (2001) Available at http://www.icpdr.org/icpdr-pages/hazardous_substances.htm.

  114. Hinsby K, Condesso T, de Melo M, Dahl M (2008) European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci Total Environ 401:1–20

    Article  CAS  Google Scholar 

  115. Brils J, Harris B (eds) (2009) Towards risk-based management or European River Basins: key-findings and recommendations of the RISKBASE project, EC FP6 reference GOCE 036938, December 2009, Utrecht, The Netherlands

    Google Scholar 

  116. Beniston M (ed) (2002) Climatic change. Implications for the hydrological cycle and for water management. Kluwer, Dordrecht and Boston, p 528

    Google Scholar 

  117. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. See http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter10-supp-material.pdf (2013/01/03)

  118. Chartres C, Williams J (2006) Can Australia overcome its water scarcity problems? J Develop Sustain Agric 1:17–24

    Google Scholar 

  119. Edwards WM, Owens LB (1991) Large storm effects on total soil erosion. J Soil Water Conserv 46:75–78

    Google Scholar 

  120. Boardman J, Burt T, Evans R, Slattery MC, Shuttleworth H (1996) Soil erosion and flooding as a result of a thunderstorm in Oxfordshire and Berkshire, May 1993. Appl Geogr 16:21–34

    Article  Google Scholar 

  121. Larson WE, Lindstrom MJ, Schumacher TE (1997) The role of severe storms in soil erosion: a problem needing consideration. J Soil Water Conserv 52(2):90–95

    Google Scholar 

  122. Boardman J (2006) Soil erosion science: reflections on the limitations of current approaches. CATENA 68:73–86

    Article  Google Scholar 

  123. Plate EJ (2002) Flood risk and flood management. J Hydrol 267:2–11

    Article  Google Scholar 

  124. Négrel P, Petelet-Giraud E (2005) Strontium isotopes as tracers of groundwater-induced floods: the Somme case study (France). J Hydrol 305:99–119

    Article  CAS  Google Scholar 

  125. Korkmaz S, Ledoux E, Önder H (2009) Application of the coupled model to the Somme river basin. J Hydrol 366:21–34

    Article  Google Scholar 

  126. Covich AP, Fritz SC, Lamb PJ, Marzolf RD, Matthews WJ, Poiani KA, Prepas EE, Richman MB, Winter TC (1997) Potential effects of climate change on aquatic ecosystems of the Great Plains of North America. Hydrol Process 11:993–1021

    Article  Google Scholar 

  127. Carling P, Beven K (1989) The hydrology, sedimentology, and geomorphological implications of floods: an overview. In: Beven K, Carling P (eds) Floods: hydrological, sedimentological, and geomorphological implications. Wiley, Chichester, pp 1–9

    Google Scholar 

  128. Fuller IC (2008) Geomorphic impacts of a 100-year flood: Kiwitea Stream, Manawatu catchment, New Zealand. Geomorphology 98:84–95

    Article  Google Scholar 

  129. Reid I, Frostick L (1994) Fluvial sediment transport and deposition. In: Pye K (ed) Sediment transport and depositional processes. Blackwell, Oxford, pp 89–155

    Google Scholar 

  130. Wohl E (2007) Review of effects of large floods in resistant-boundary channels. Developments in earth surface processes, vol 11. Elsevier, Amsterdam, pp 181–211

    Google Scholar 

  131. Peters E, Bier G, van Lanen HAJ, Torfs PJJF (2006) Propagation and spatial distribution of drought in a groundwater catchment. J Hydrol 321:257–275

    Article  Google Scholar 

  132. Tweed S, Leblanc M, Cartwright I (2009) Groundwater–surface water interaction and the impact of a multi-year drought on lakes conditions in South-East Australia. J Hydrol 379:41–53

    Article  Google Scholar 

  133. Nemetz S, Kralik M, McCallum S, Prutsch A, Schaller M, Colonna P, Balzarolo D, Beniston M, Hornemann C (2009) The Alps as water towers for Europe. p 30–40. In: EEA (ed): Regional climate change and adaptation: the Alps facing the challenge of changing water resources. pp. 143, Report No. 8/2009, European Environment Agency. Available at http://www.eea.europa.eu/publications/alps-climate-change-and-adaptation-2009

  134. USGS (2005) Droughts, climate change, and ground-water sustainability. http://pubs.usgs.gov/circ/circ1186/html/boxb.html.

  135. Matsubara H, Morimoto S, Sase H, Ohizumi O, Sumida H, Nakata M, Hueda H (2009) Long-term declining trends in river water pH in central Japan. Water Air Soil Pollut 200:253–265

    Article  CAS  Google Scholar 

  136. Lin C, Tong X, Lu W, Yan L, Wu Y, Nie C, Chu C, Long J (2005) Environmental impacts of surface mining on mined lands, affected streams and agricultural lands in the Dabaoshan Mine region, southern China. Land Degrad Develop 16:463–474

    Article  Google Scholar 

  137. Raymond PA, Oh NH (2009) Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth Planet Sci Lett 284:50–56

    Article  CAS  Google Scholar 

  138. Wade AJ, Neal C, Soulsby C, Langan SJ, Smart RP (2001) On modelling the effects of afforestation on acidification in heterogeneous catchments at different spatial and temporal scales. J Hydrol 250:149–169

    Article  CAS  Google Scholar 

  139. Lockwood PV, Wilson BR, Daniel H, Jones MJ (2003) Soil acidification and natural resource management : directions for the future. (University of New England). ISCO 2004—13th International Soil Conservation Organisation Conference—Brisbane, July 2004 Conserving Soil and Water for Society: Sharing Solutions, Paper No. 666 ISBN 186389859X. Also available at :http://www.une.edu.au/agronomy/acidification.htm.

  140. Steinberg CEW, Wright RF (1994) Acidification of freshwater ecosystems: implications for the future: Report of the Dahlem workshop on acidification on freshwater ecosystems.

    Google Scholar 

  141. Evans CD, Cooper DM, Juggins S, Jenkins A, Norris D (2006) A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network. Sci Total Environ 365:167–185

    Article  CAS  Google Scholar 

  142. Clayton JL, Kennedy DA, Nagel T (1991) Soil response to acid deposition, wind river mountains, wyoming.1. Soil properties. Soil Sci Soc Am J 55:1427–1433

    Article  Google Scholar 

  143. Coleman DC, Oades JM, Uehara G (1989) Dynamics of soil organic matter in tropical ecosystems. University of Hawaii Press, Honolulu

    Google Scholar 

  144. Glossary of Soil Science Terms (1997) Published by the Soil Science Society of America, Madison WI. Available online at: http://www.soils.org/

  145. Allison FE (1973) Soil organic matter and its role in crop production. Elsevier, New York

    Google Scholar 

  146. Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167

    Article  Google Scholar 

  147. Loveland P, Webb J (2003) Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Tillage Res 70:1–18

    Article  Google Scholar 

  148. Post WM, Izaurralde R, Jastrow JD, McCarl BA, Amonette JE, Bailey VL, Jardine PM, West TO, Zhou J (2004) Enhancement of carbon sequestration in US soils. Bioscience 54:895–908

    Article  Google Scholar 

  149. Carter MR (1994) A review of conservation tillage strategies for humid temperate regions. Soil Tillage Res 31:289–301

    Article  Google Scholar 

  150. Shibu ME, Leffelaar PA, Van Keulen H, Aggarwal PK (2006) Quantitative description of soil organic matter dynamics–A review of approaches with reference to rice-based cropping systems. Geoderma 137:1–18

    Article  CAS  Google Scholar 

  151. Brils J, Barceló D, Blum W, Brack W, Harris B, Müller-Grabherr D, Négrel P, Ragnarsdottir V, Salomons W, Slob A, Track T, Vegter J, Vermaat JE (2014) Introduction: the need for Risk-Informed River Basin Management. In: Brils J, Brack W, Müller D, Négrel P, Vermaat JE (eds) Risk-informed management of European River Basins. Springer, Heidelberg

    Google Scholar 

  152. von der Ohe PC, de Zwart D, Semenzin E, Apitz SE, Gottardo S, Harris B, Hein M, Marcomini A, Posthuma L, Schäfer RB, Segner H, Brack W (2014) Monitoring Programs, Multiple Stress Analysis and Decision Support for River Basin Management. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-informed management of European River Basins. Springer, Heidelberg

    Google Scholar 

  153. Négrel P, Blessing M, Millot R, Petelet-Giraud E, Innocent C (2012) Isotopic methods give clues about the origins of trace metals and organic pollutants in the environment. Trends Anal Chem 38:143–153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Négrel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Négrel, P. et al. (2014). Soil–Sediment–River Connections: Catchment Processes Delivering Pressures to River Catchments. In: Brils, J., Brack, W., Müller-Grabherr, D., Négrel, P., Vermaat, J. (eds) Risk-Informed Management of European River Basins. The Handbook of Environmental Chemistry, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38598-8_2

Download citation

Publish with us

Policies and ethics