Skip to main content

Cytochromes P450 of the Alkane-Utilising Yeast Yarrowia lipolytica

  • Chapter
  • First Online:
  • 1578 Accesses

Part of the book series: Microbiology Monographs ((MICROMONO,volume 25))

Abstract

Since the first studies in 1980s, P450 has been shown to be induced during growth of Y. lipolytica on alkanes, fatty alcohols and fatty acids and evidenced to be involved in terminal hydroxylation of alkanes and ω-hydroxylation of fatty acids without differentiation between P450 isoforms. The alkane-hydroxylating P450 exhibit an extraordinary high in vivo activity with turnover numbers up to 3,000/min.

Altogether Y. lipolytica contains 17 P450 genes and electron transfer protein genes, encoding for NADPH-P450 reductase, NADH-b5 reductase and cytochrome b5. The multiple paralog P450 genes ALK1 to ALK12, classified into the CYP52 family of the P450 supergene family CYP, were detected by gene cloning and deduced from the Y. lipolytica genome sequence and represent predominantly alkane- or fatty acid-inducible genes. The multiplicity in the CYP52 family reflects an adaptation to the utilisation of different hydrocarbons and fatty acids and is assumed to be a result of gene duplications and divergent evolution from an ancestral gene. Additionally, P450 genes were deduced, encoding for P450 14DM (CYP51F) and P450 22DS (CYP61A) being involved in ergosterol biosynthesis, and moreover three putative P450 genes (P4501 to P4503) were detected, which function remains to be elucidated.

The P450 ALK genes have obviously diversified in their inducibiltiy and regulation, and in the substrate, chain-length and regioselectivity of encoded P450. However, functional analyses have been performed only for a subset of P450s of Candida spp. and Y. lipolytica, and the in vivo function of most individual P450ALK remains to be studied.

Throughout this section n-alkanes and fatty acids (FA) of defined chain lengths will be referred to as C10 (decane), C12 (dodecane), C14 (tetradecane), hexadecane (C16), dodecanoic or lauric acid (C12FA), palmitic acid (C16FA), etc., in accordance with the number of carbon atoms they contain

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

aa:

Amino acids

AHA:

Alkane hydroxylase activity

AMOS:

Alkane monooxygenase system

C. :

Candida

ER:

Endoplasmic reticulum

FADH:

NAD(P)+-dependent fatty alcohol dehydrogenases (ADH genes)

FAHA:

Fatty acid ω-hydroxylase activity

FALDH:

NAD(P)+-dependent fatty aldehyde dehydrogenases (ALD genes)

FAO:

Fatty alcohol oxidases (FAO genes)

P450:

Cytochrome P450

S. :

Saccharomyces

Y. :

Yarrowia

References

  • Baroncelli V, Boccalon G, Giannini I, Renzi P (1979) An inducible n-alkane hydroxylase system containing cytochrome “o” from Candida lipolytica. Mol Cell Biochem 28:3–6

    Article  PubMed  CAS  Google Scholar 

  • Barros MH, Nobrega FG (1999) YAH1 of Saccharomyces cerevisiae: a new essential gene that codes for a protein homologous to human adrenodoxin. Gene 233:197–203

    Article  PubMed  CAS  Google Scholar 

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. A handbook. Springer, Berlin, pp 313–388

    Chapter  Google Scholar 

  • Beopoulos A, Desfougéres T, Sabirova J, Zinjarde S, Neuveglise C, Nicaud J-M (2010a) The hydrocarbon-degrading oleaginous yeast Yarrowia lipolytica. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, volume 3, part 1, chapter 35. Springer, Berlin, pp 2111–2121

    Google Scholar 

  • Beopoulos A, Desfougéres T, Sabirova J, Nicaud J-M (2010b) Yarrowia lipolytica as a cell factory for oleochemical biotechnology. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, volume 4, part 5, chapter 45. Springer, Berlin, pp 3003–3010

    Google Scholar 

  • Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206

    Article  PubMed  CAS  Google Scholar 

  • Blasig R, Mauersberger S, Riege P, Schunck W-H, Jockisch W, Franke P, Müller H-G (1988) Degradation of long-chain n-alkanes by the yeast Candida maltosa II. In vitro oxidation of n-alkanes and intermediates using microsomal membrane fractions. Appl Microbiol Biotechnol 28:589–597

    Article  CAS  Google Scholar 

  • Braun A, Geier M, Buehler B, Schmid A, Mauersberger S, Glieder A (2012) Steroid biotransformation in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Microb Cell Fact 11:106. doi:10.1186/1475-2859-11-106

    Article  PubMed  CAS  Google Scholar 

  • Bureik M, Schiffler B, Hiraoka Y, Vogel F, Bernhardt R (2002) Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein, etp1. Biochemistry 41:2311–2321

    Article  PubMed  CAS  Google Scholar 

  • Coelho MAZ, Amaral PFF, Belo I (2010) Yarrowia lipolytica: an industrial workhorse. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex, Badajoz, pp 930–944

    Google Scholar 

  • Craft DL, Madduri KM, Eshoo M, Wilson CR (2003) Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α, ω-dicarboxylic acids. Appl Environ Microbiol 69:5983–5991

    Article  PubMed  CAS  Google Scholar 

  • Crešnar B, Petrič S (2011) Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta 1814(1):29–35

    Article  PubMed  Google Scholar 

  • Delaissé JM, Martin P, Verkeyen-Bouvy MF, Nyns EJ (1981) Subcellular distribution of enzymes in the yeast Saccharomycopsis lipolytica, grown on n-hexadecane, with special reference to the ω-hydroxylase. Biochim Biophys Acta 676:77–90

    Article  PubMed  Google Scholar 

  • Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450omr) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92

    Article  PubMed  Google Scholar 

  • Drennan MB (2000) Differential transcription of CYP52 genes of Yarrowia lipolytica during growth on hydrocarbons. Master thesis, Department Microbiology and Biochemistry, The University of the Orange Free State, Bloemfontein, Republic of South Africa

    Google Scholar 

  • Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • Dumas B, Cauet G, Lacour T, Degryse E, Laruelle L, Ledoux C, Spagnoli R, Achstetter T (1996) 11β-hydroxylase activity in recombinant yeast mitochondria. In vivo conversion of 11-deoxycortisol to hydrocortisone. Eur J Biochem 238:495–504

    Article  PubMed  CAS  Google Scholar 

  • Endoh-Yamagami S, Hirakawa K, Morioka D, Fukuda R, Ohta A (2007) Basic helix-loop-helix transcription factor heterocomplex of Yas1p and Yas2p regulates cytochrome P450 expression in response to alkanes in the yeast Yarrowia lipolytica. Eukaryot Cell 6:734–743

    Article  PubMed  CAS  Google Scholar 

  • Eschenfeldt WH, Zhang Y, Samaha H, Stols L, Eirich LD, Wilson CR, Donnelly MI (2003) Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis. Appl Environ Microbiol 69:5992–5999

    Article  PubMed  CAS  Google Scholar 

  • Ewen KM, Schiffler B, Uhlmann-Schiffler H, Bernhardt R, Hannemann F (2008) The endogenous adrenodoxin reductase-like flavoprotein arh1 supports heterologous cytochrome P450-dependent substrate conversions in Schizosaccharomyces pombe. FEMS Yeast Res 8:432–441

    Article  PubMed  CAS  Google Scholar 

  • Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  PubMed  CAS  Google Scholar 

  • Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41:418–425

    Article  CAS  Google Scholar 

  • Fukuda R, Ohta A (2013) Utilization of hydrophobic substrates by Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica. Springer, Heidelberg

    Google Scholar 

  • Hanley K, Nguyen LV, Khan F, Pogue GP, Vojdani F, Panda S, Pinot F, Oriedo VP, Rasochova L, Subramanian M, Miller B, White EL (2003) Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome P450 monooxygenases. Assay Drug Dev Technol 1:147–160

    PubMed  CAS  Google Scholar 

  • Hirakawa K, Kobayashi S, Inoue T, Endoh-Yamagami S, Fukuda R, Ohta A (2009) Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J Biol Chem 284:7126–7137

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Ohta A, Takagi M (1998) Cloning and characterization of an n-alkane-inducible cytochrome P450 gene essential for n-decane assimilation by Yarrowia lipolytica. Yeast 14:1387–1397

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Sumita T, Ohta A, Takagi M (2000) The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16:1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Ilchenko AP, Mauersberger S, Matyashova RN, Losinov AB (1980) Induction of cytochrome P-450 in the course of yeast growth on different substrates (Russian). Mikrobiologiya 49:452–458

    CAS  Google Scholar 

  • Ilchenko AP, Morgunov IG, Honeck H, Mauersberger S, Vasilkova NN, Müller H-G (1994) Purification and some properties of alcohol oxidase from the yeast Yarrowia lipolytica H222 (Russian). Biokhimiya (Moscow) 59:1312–1319

    CAS  Google Scholar 

  • Ilchenko AP, Chernyavskaya OG, Shishkanova NV, Finogenova TV (2003) Induction of cytochrome P-450 and ethanol oxidation in Yarrowia lipolytica cells (Russian). Mikrobiologiya 72:168–173

    CAS  Google Scholar 

  • Juretzek T (1999) Entwicklung von Wirts-Vektor-Systemen zur heterologen Expression von Proteinen in der nichtkonventionellen Hefe Yarrowia lipolytica und ihre Anwendung für die Cytochrom P450-katalysierte Stoffumwandlung. PhD thesis, Technische Universität Dresden

    Google Scholar 

  • Juretzek T, Mauersberger S, Barth G (2000) Recombinant haploid or diploid Yarrowia lipolytica cells for the functional heterologous expression of cytochrome P450 systems. Patent WO0003008, DE19932811

    Google Scholar 

  • Kemp GD, Dickinson FM, Ratledge C (1990) Light sensitivity of the n-alkane-induced fatty alcohol oxidase from Candida tropicalis and Yarrowia lipolytica. Appl Microbiol Biotechnol 32:461–464

    Article  CAS  Google Scholar 

  • Kobayashi S, Hirakawa K, Fukuda R, Ohta A (2008) Disruption of the SCS2 ortholog in the alkane-assimilating yeast Yarrowia lipolytica impairs its growth on n-decane, but does not impair inositol prototrophy. Biosci Biotechnol Biochem 72:2219–2223

    Article  PubMed  CAS  Google Scholar 

  • Lacour T, Achstetter T, Dumas B (1998) Characterization of recombinant adrenodoxin reductase homologue (Arh1p) from yeast. Implication in in vitro cytochrome P45011beta monooxygenase system. J Biol Chem 273:23984–23992

    Article  PubMed  CAS  Google Scholar 

  • Lah L, Krasevec N, Trontelj P, Komel R (2008) High diversity and complex evolution of fungal cytochrome P450 reductase: cytochrome P450 systems. Fungal Genet Biol 45:446–458

    Article  PubMed  CAS  Google Scholar 

  • Lamb DC, Lei L, Warrilow AG, Lepesheva GI, Mullins JG, Waterman MR, Kelly SL (2009) The first virally encoded cytochrome p450. J Virol 83(16):8266–8269

    Article  PubMed  CAS  Google Scholar 

  • Lottermoser K, Schunck W-H, Asperger O (1996) Cytochrome P450 of the sophorose lipid-producing yeast Candida apicola: heterogeneity and polymerase chain reaction mediated cloning of two genes. Yeast 12:565–575

    Article  PubMed  CAS  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  PubMed  Google Scholar 

  • Manzella L, Barros MH, Nobrega FG (1998) ARH1 of Saccharomyces cerevisiae: a new essential gene that codes for a protein homologous to the human adrenodoxin reductase. Yeast 14:839–846

    Article  PubMed  CAS  Google Scholar 

  • Marchal R, Metche M, Vandecasteele J-P (1982) Hydroxylation of alkanes and fatty acids in Saccharomycopsis lipolytica. Evidence for the involvement of cytochrome P-450. J Gen Microbiol 128:1125–1134

    CAS  Google Scholar 

  • Mauersberger S (1991) Mutants of alkane oxidation in the yeasts Yarrowia lipolytica and Candida maltosa. In: Finogenova TV, Sharyshev AA (eds) Alkane metabolism and oversynthesis of metabolites by microorganisms. Center for Biological Research, USSR Academy of Sciences, Pushchino, Russia, pp 59–78

    Google Scholar 

  • Mauersberger S, Matyashova RN (1980) The content of cytochrome P-450 in yeast cells growing on hexadecane (Russian). Mikrobiologiya (Moscow) 49:571–577

    CAS  Google Scholar 

  • Mauersberger S, Nicaud J-M (2003) Chapter 56. Tagging of genes by insertional mutagenesis in the yeast Yarrowia lipolytica. In: Wolf K, Breunig K, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology. Practical protocols. Springer, Berlin, pp 343–356

    Chapter  Google Scholar 

  • Mauersberger S, Matyashova RN, Müller H-G, Losinov AB (1980) Influence of the growth substrate and the oxygen concentration in the medium on the cytochrome P-450 content in Candida guilliermondii. Eur J Appl Microbiol Biotechnol 9:285–294

    Article  CAS  Google Scholar 

  • Mauersberger S, Schunck W-H, Müller H-G (1981) The induction of cytochrome P-450 in Lodderomyces elongisporus. Z Allg Mikrobiol 21:313–321

    Article  PubMed  CAS  Google Scholar 

  • Mauersberger S, Schunck W-H, Müller H-G (1984) The induction of cytochrome P-450 in the alkane-utilizing yeast Lodderomyces elongisporus: alterations in the microsomal membrane fraction. Appl Microbiol Biotechnol 19:29–35

    Article  CAS  Google Scholar 

  • Mauersberger S, Kärgel E, Matyashova RN, Müller H-G (1987) Subcellular organization of alkane oxidation in the yeast Candida maltosa. J Basic Microbiol 27:565–582

    Article  CAS  Google Scholar 

  • Mauersberger S, Böhmer A, Schunck W-H, Müller H-G (1991) Cytochrome P-450 of the yeast Yarrowia lipolytica. In: Abstract international symposium cytochrome P-450 of microorganisms, Berlin, p 63; and Abstracts international conference on biochemistry, biophysics of cytochrome P-450: structure, function, biotechnological and ecological aspects, Moscow

    Google Scholar 

  • Mauersberger S, Persiyanova TB, Avetisova SM, Sokolov YI, Kärgel E, Kraft R, Schunck W-H, Davidov ER, Müller H-G (1992a) Characterization of two cytochrome P-450 forms purified from the yeast Candida maltosa. In: Archakov AI, Bachmanova GI (eds) Cytochrome P-450: biochemistry and biophysics. INCO - TNC, Joint Stock Company, Moscow, pp 651–653

    Google Scholar 

  • Mauersberger S, Drechsler H, Oehme G, Müller H-G (1992b) Substrate specificity and stereoselectivity of the fatty alcohol oxidase from the yeast Candida maltosa. Appl Microbiol Biotechnol 37:66–73

    Article  CAS  Google Scholar 

  • Mauersberger S, Ohkuma M, Schunck W-H, Takagi M (1996) Chapter 12. Candida maltosa. In: Wolf K (ed) Non-conventional yeasts in biotechnology. Springer, Berlin, pp 411–580

    Chapter  Google Scholar 

  • Mauersberger S, Wang H-J, Gaillardin C, Barth G, Nicaud J-M (2001) Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutants in genes involved in hydrophobic substrates utilization. J Bacteriol 183:5102–5109

    Article  PubMed  CAS  Google Scholar 

  • Mauersberger S, Novikova LA, Shkumatov VM (2013) Cytochrome P450 expression in Yarrowia lipolytica and its use in steroid biotransformation. In: Barth G (ed) Yarrowia lipolytica. Springer, Heidelberg

    Google Scholar 

  • Mekouar M, Blanc-Lenfle I, Ozanne C, Da Silva C, Cruaud C, Wincker P, Gaillardin C, Neuvéglise C (2010) Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol 11:R65

    Article  PubMed  Google Scholar 

  • Menzel R, Vogel F, Kärgel E, Schunck W-H (1997) Inducible membranes in yeast: relation to the unfolded-protein-response pathway. Yeast 13:1211–1229

    Article  PubMed  CAS  Google Scholar 

  • Mlícková K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud J-M (2004) Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 70:3918–3924

    Article  PubMed  Google Scholar 

  • Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4:59–65

    PubMed  CAS  Google Scholar 

  • Novikova LA, Faletrov YV, Kovaleva IE, Mauersberger S, Luzikov VN, Shkumatov VM (2009) From structure and functions of steroidogenic enzymes to new technologies of gene engineering. Review. Biochemistry (Moscow) 74:1482–1504

    Article  CAS  Google Scholar 

  • Oeda K, Sakaki T, Ohkawa H (1985) Expression of rat liver cytochrome P-450MC cDNA in Saccharomyces cerevisiae. DNA 4:203–210

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Hikiji T, Tanimoto T, Schunck W-H, Müller H-G, Yano K, Takagi M (1991a) Evidence that more than one gene encodes n-alkane-inducible cytochrome P-450s in Candida maltosa, found by two-step gene disruption. Agric Biol Chem 55:1757–1764

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Tanimoto T, Yano K, Takagi M (1991b) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: molecular cloning and nucleotide sequence of the two tandemly arranged genes. DNA Cell Biol 10:271–282

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Muraoka S-I, Tanimoto T, Fujii M, Ohta A, Takagi M (1995a) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol 14:163–173

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Park S-M, Zimmer T, Menzel R, Vogel F, Schunck W-H, Ohta A, Takagi M (1995b) Proliferation of intracellular membrane structures upon homologous overproduction of cytochrome P-450 in Candida maltosa. Biochim Biophys Acta (Biomembranes) 1236:163–169

    Article  Google Scholar 

  • Ohkuma M, Masuda Y, Park S-M, Ohtomo R, Ohta A, Takagi M (1995c) Evidence that the expression of the gene for NADPH-cytochrome P-450 reductase is n-alkane-inducible in Candida maltosa. Biosci Biotechnol Biochem 59:1328–1330

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Zimmer T, Iida T, Schunck W-H, Ohta A, Takagi M (1998) Isozyme function of n-alkane-inducible cytochromes P450 in Candida maltosa revealed by sequential gene disruption. J Biol Chem 273:3948–3953

    Article  PubMed  CAS  Google Scholar 

  • Ortiz de Montellano PR (ed) (2005) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Plenum, New York

    Google Scholar 

  • Peterson JA (1970) Cytochrome content of two Pseudomonads containing mixed function oxidase systems. J Bacteriol 103:714–721

    PubMed  CAS  Google Scholar 

  • Petzsch P (2012) Generierung eines funktionellen Kataloges für das Genom der Hefe Yarrowia lipolytica und dessen Anwendung bei Microarray-Untersuchungen zur Genexpression. PhD thesis, Technische Universität Dresden

    Google Scholar 

  • Pompon D, Louerat B, Bronine A, Urban P (1996) Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol 272:51–64

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Kominami S, Hayashi K, Akiyoshi-Shibata M, Yabusaki Y (1996) Molecular engineering study on electron transfer from NADPH-P450 reductase to rat mitochondrial P450c27 in yeast microsomes. J Biol Chem 271:2609–26213

    Google Scholar 

  • Sanglard D, Fiechter A (1989) Heterogeneity within the alkane-inducible cytochrome P450 gene family of the yeast Candida tropicalis. FEBS Lett 256:128–133

    Article  PubMed  CAS  Google Scholar 

  • Scheller U, Zimmer T, Kärgel E, Schunk W-H (1996) Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4. Arch Biochem Biophys 328:245–254

    Article  PubMed  CAS  Google Scholar 

  • Scheller U, Zimmer T, Becher D, Schauer F, Schunck W-H (1998) Oxygenation cascade in conversion of n-alkanes to α, ω-dioic acids catalyzed by cytochrome P450 52A3. J Biol Chem 273:32528–32534

    Article  PubMed  CAS  Google Scholar 

  • Schiffler B, Bureik M, Reinle W, Müller EC, Hannemann F, Bernhardt R (2004) The adrenodoxin-like ferredoxin of Schizosaccharomyces pombe mitochondria. J Inorg Biochem 98:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Schunck W-H, Mauersberger S, Huth J, Riege P, Mülller H-G (1987a) Function and regulation of cytochrome P-450 in alkane-assimilating yeast I. Selective inhibition with carbon monoxide in growing cells. Arch Microbiol 147:240–244

    Article  CAS  Google Scholar 

  • Schunck W-H, Mauersberger S, Kärgel E, Huth J, Müller H-G (1987b) Function and regulation of cytochrome P-450 in alkane-assimilating yeast II. Effect of oxygen-limitation. Arch Microbiol 147:245–248

    Article  CAS  Google Scholar 

  • Schunck W-H, Kärgel E, Gross B, Wiedmann B, Mauersberger S, Köpke K, Kießling U, Strauss M, Gaestel M, Müller H-G (1989) Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Commun 181:843–850

    Article  Google Scholar 

  • Schunck W-H, Vogel F, Gross B, Kärgel E, Mauersberger S, Köpke K, Gengnagel C, Müller HG (1991) Comparison of two cytochromes P-450 from Candida maltosa: primary structures, substrate specificities and effects of their expression in Saccharomyces cerevisiae on the proliferation of the endoplasmic reticulum. Eur J Cell Biol 55:336–345

    PubMed  CAS  Google Scholar 

  • Seghezzi W, Meili C, Ruffiner R, Kuenzi R, Sanglard D, Fiechter A (1992) Identification and characterization of additional members of the cytochrome P450 multigene family CYP52 of Candida tropicalis. DNA Cell Biol 11:767–780

    Article  PubMed  CAS  Google Scholar 

  • Shkumatov VM, Smettan G (1991) Heterologous reconstruction of monooxygenase systems: substrate specific cytochrome P-450-microorganism (Russian). In: Finogenova TV, Sharyshev AA (eds) Alkane metabolism and oversynthesis of metabolites by microorganisms. Center for Biological Research, USSR Academy of Sciences, Pushchino, Russia, pp 78–86

    Google Scholar 

  • Shkumatov VM, Usova EV, Poljakov YS, Frolova NS, Radyuk VG, Mauersberger S, Chernogolov AA, Honeck H, Schunck W-H (2002) Biotransformation of steroids by a recombinant yeast strain expressing bovine cytochrome P-45017α. Biochemistry (Moscow) 67:456–467

    Article  CAS  Google Scholar 

  • Shkumatov VM, Frolova NS, Rudaya EV, Faletrov YV, Mauersberger S, Barth G (2006) Range of substrates and steroid bioconversion reactions performed by recombinant microorganisms Saccharomyces cerevisiae and Yarrowia lipolytica expressing cytochrome P450c17. Prikl Biokhim Mikrobiol 42:539–546

    PubMed  CAS  Google Scholar 

  • Sood N, Lal B (2008) Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions. J Environ Manage 90:1728–1736

    Article  PubMed  Google Scholar 

  • Sumita T, Iida T, Hirata A, Horiuchi H, Takagi M, Ohta A (2002a) Peroxisome deficiency represses the expression of n-alkane-inducible YlALK1 encoding cytochrome P450ALK1 in Yarrowia lipolytica. FEMS Microbiol Lett 214:31–38

    Article  PubMed  CAS  Google Scholar 

  • Sumita T, Iida T, Yamagami S, Horiuchi H, Takagi M, Ohta A (2002b) YlALK1 encoding the cytochrome P450ALK1 in Yarrowia lipolytica is transcriptionally induced by n-alkane through two distinct cis-elements on its promoter. Biochem Biophys Res Commun 294:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Takagi M, Moriya K, Yano K (1980) Induction of cytochrome P450 in petroleum-assimilating yeast. I. Selection of a strain and basic characterization of cytochrome P450 induction in the strain. Cell Mol Biol 25:363–369

    Google Scholar 

  • Takai H, Iwama R, Kobayashi S, Horiuchi H, Fukuda R, Ohta A (2012) Construction and characterization of a Yarrowia lipolytica mutant lacking genes encoding cytochromes P450 subfamily 52. Fungal Genet Biol 49(1):58–64

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Fukui S (1989) Metabolism of n-alkanes. In: Rose AH, Harrison JS (eds) The yeast. Metabolism and physiology of yeasts, vol 3, 2nd edn. Academic, London, pp 261–287

    Google Scholar 

  • Thevenieau (2006) Ingenierie metabolique de la levure Yarrowia lipolytica pour la production d’acides dicarboxyliques a partier d’huiles vegetales. PhD thesis, INRA, Paris-Grignon

    Google Scholar 

  • Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM (2007) Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 44(6):531–542 (Epub 2006 Oct 30)

    Article  PubMed  CAS  Google Scholar 

  • Thevenieau F, Nicaud J-M, Gaillardin C (2009) Chapter 26. Applications of the non-conventional yeast Yarrowia lipolytica. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 589–613. doi:10.1007/978-1-4020-8292-4_26

    Chapter  Google Scholar 

  • Thevenieau F, Beopoulos F, Desfougeres T, Sabirova J, Albertin K, Zinjarde S, Nicaud J-M (2010) Uptake and assimilation of hydrophobic substrates by the oleaginous yeast Yarrowia lipolytica. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 2, part 7, chapter 48. Springer, Berlin, pp 1513–1527

    Google Scholar 

  • Urban P, Truan G, Bellamine A, Laine R, Gautier JC, Pompon D (1994) Engineered yeasts simulating P450-dependent metabolisms: tricks, myths and reality. Review. Drug Metabol Drug Interact 11:169–200

    Article  PubMed  CAS  Google Scholar 

  • van den Brink HM, van Gorcom RF, van den Hondel CA, Punt PJ (1998) Cytochrome P450 enzyme systems in fungi. Fungal Genet Biol 23:1–17

    Article  PubMed  Google Scholar 

  • Vogel F, Gengnagel C, Kärgel E, Müller H-G, Schunck W-H (1992) Immunocytochemical localization of alkane-inducible cytochrome P450 and its NADPH-dependent reductase in the yeast Candida maltosa. Eur J Cell Biol 57:285–291

    PubMed  CAS  Google Scholar 

  • Wortman JR, Gilsenan JM, Joardar V et al (2009) The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet Biol 46(Suppl 1):S2–S13

    Article  PubMed  CAS  Google Scholar 

  • Wright R (1993) Insights from inducible membranes. Curr Biol 3:870–873

    Article  PubMed  CAS  Google Scholar 

  • Yamagami S, Iida T, Nagata Y, Ohta A, Takagi M (2001) Isolation and characterization of acetoacetyl-CoA thiolase gene essential for n-decane assimilation in yeast Yarrowia lipolytica. Biochem Biophys Res Commun 282:832–838

    Article  PubMed  CAS  Google Scholar 

  • Yamagami S, Morioka D, Fukuda R, Ohta A (2004) A basic helix-loop-helix transcription factor essential for cytochrome P450 induction in response to alkanes in yeast Yarrowia lipolytica. J Biol Chem 279:22183–22189

    Article  PubMed  CAS  Google Scholar 

  • Zimmer T, Ohkuma M, Ohta A, Takagi M, Schunck W-H (1996) The CYP52 multigene family of Candida maltosa encodes functionally diverse n-alkane-inducible cytochromes P450. Biochem Biophys Res Commun 224:784–789

    Article  PubMed  CAS  Google Scholar 

  • Zimmer T, Iida T, Schunck W-H, Yoshida Y, Ohta A, Takagi M (1998) Relation between evolutionary distance and enzymatic properties among the members of the CYP52A subfamily of Candida maltosa. Biochem Biophys Res Commun 251:244–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank my collaborators Masamichi Takagi (Tokyo University), Wolf-Hagen Schunck (MDC Berlin), Andrey Sharyshev (IBPM Pushchino), Thomas Juretzek, André Förster and Patrick Petzsch (TU Dresden) for sharing unpublished results and for fruitful discussions and permanent interest in this research field. Part of this work was supported in part by grant 0310257A from the Bundesministerium für Forschung und Technologie (BMFT) of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Mauersberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mauersberger, S. (2013). Cytochromes P450 of the Alkane-Utilising Yeast Yarrowia lipolytica . In: Barth, G. (eds) Yarrowia lipolytica. Microbiology Monographs, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38583-4_8

Download citation

Publish with us

Policies and ethics