Skip to main content

Acid and Alkaline Extracellular Proteases of Yarrowia lipolytica

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 25))

Abstract

XPR2 and AXP1, coding for alkaline (AEP) and acid (AXP) extracellular proteases, have been sequenced for several strains. For XPR2, the three sequenced strains are not closely related and produce significantly different levels of AEP, yet the coding sequences are identical, and there is only a single nucleotide difference in one promoter suggesting that host physiology, not promoter differences, determines AEP production. The possibility that pro-mAEP forms a dimer that can inhibit mature AEP (mAEP) proteolytic activity in trans is examined. AXP contains a predicted signal sequence and a 44 amino acid prepro-region. Activation involves pH-dependent autoprocessing that occurs extracellularly. XPR2 UAS1 and UAS2 promoter elements have been identified and their roles in regulation explored. Cis-sequences and Rim pathway components involved in pH regulation of the proteases have been discovered and characterized. YlOPT1 and YLSSY5 are in a signaling pathway(s) regulating AXP1 and XPR2, perhaps by sensing amino acids. Both pepsin-like (30 potentially secreted members) and subtilisin-like (16 potentially secreted members) gene families have undergone lineage-specific expansion compared to other yeast and filamentous fungi. To determine if expression of secretory pathway components is regulated in response to secretory demand, rapid AEP induction conditions and XPR2 multicopy strains were developed. Changes in genomic transcription were measured when growth started to slow after AEP induction. For secretory pathway components, mostly repression was found. Possibly, their induction had occurred by the control time point, and the turning off of this short-term response at later time points appeared as repression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Sater F, El Bakkoury M, Urrestarazu A, Vissers S, Andre B (2004) Amino acid signaling in yeast: casein kinase I and the Ssy5 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stp1 transcription factor. Mol Cell Biol 24:9771–9785

    Article  PubMed  CAS  Google Scholar 

  • Ahearn DG, Meyers SP, Nichols RA (1968) Extracellular proteinases of yeasts and yeastlike fungi. Appl Microbiol 16:1370–1374

    PubMed  CAS  Google Scholar 

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Non-conventional yeasts in biotechnology a handbook. Springer, Berlin, pp 313–388

    Chapter  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Blanchin-Roland S, Cordero Otero RR, Gaillardin C (1994) Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol 14:327–338

    PubMed  CAS  Google Scholar 

  • Blanchin-Roland S, Da Costa G, Gaillardin C (2005) ESCRT-I components of the endocytic machinery are required for Rim101-dependent ambient pH regulation in the yeast Yarrowia lipolytica. Microbiology 151:3627–3637

    Article  PubMed  CAS  Google Scholar 

  • Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, Boer VM, Troyanskaya OG, Botstein D (2008) Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19:352–367

    Article  PubMed  CAS  Google Scholar 

  • Davidow LS, O’Donnell MM, Kaczmarek FS, Pereira DA, DeZeeuw JR, Franke AE (1987) Cloning and sequencing of the alkaline extracellular protease gene of Yarrowia lipolytica. J Bacteriol 169:4621–4629

    PubMed  CAS  Google Scholar 

  • Enderlin CS, Ogrydziak DM (1994) Cloning, nucleotide sequence and functions of XPR6, which codes for a dibasic processing endoprotease from the yeast Yarrowia lipolytica. Yeast 10:67–79

    Article  PubMed  CAS  Google Scholar 

  • Fabre E, Tharaud C, Gaillardin C (1992) Intracellular transit of a yeast protease is rescued by trans-complementation with its prodomain. J Biol Chem 267:15049–15055

    PubMed  CAS  Google Scholar 

  • Glover DJ, McEwen RK, Thomas CR, Young TW (1997) pH-regulated expression of the acid and alkaline extracellular proteases of Yarrowia lipolytica. Microbiology 143(Pt 9):3045–3054

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lopez CI, Szabo R, Blanchin-Roland S, Gaillardin C (2002) Genetic control of extracellular protease synthesis in the yeast Yarrowia lipolytica. Genetics 160:417–427

    PubMed  CAS  Google Scholar 

  • Hu Z, Haghjoo K, Jordan F (1996) Further evidence for the structure of the subtilisin propeptide and for its interactions with mature subtilisin. J Biol Chem 271:3375–3384

    Article  PubMed  CAS  Google Scholar 

  • Lambert M, Blanchin-Roland S, Le Louedec F, Lepingle A, Gaillardin C (1997) Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog. Mol Cell Biol 17:3966–3976

    PubMed  CAS  Google Scholar 

  • Le Dall MT, Nicaud JM, Gaillardin C (1994) Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet 26:38–44

    Article  PubMed  Google Scholar 

  • Leek JT, Monsen E, Dabney AR, Storey JD (2006) EDGE: extraction and analysis of differential gene expression. Bioinformatics 22:507–508

    Article  PubMed  CAS  Google Scholar 

  • Madzak C, Blanchin-Roland S, Cordero Otero RR, Gaillardin C (1999) Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter. Microbiology 145(Pt 1):75–87

    Article  PubMed  CAS  Google Scholar 

  • Madzak C, Treton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2:207–216

    PubMed  CAS  Google Scholar 

  • Matoba S, Ogrydziak DM (1989) A novel location for dipeptidyl aminopeptidase processing sites in the alkaline extracellular protease of Yarrowia lipolytica. J Biol Chem 264:6037–6043

    PubMed  CAS  Google Scholar 

  • Matoba S, Ogrydziak DM (1998) Another factor besides hydrophobicity can affect signal peptide interaction with signal recognition particle. J Biol Chem 273:18841–18847

    Article  PubMed  CAS  Google Scholar 

  • Matoba S, Fukayama J, Wing RA, Ogrydziak DM (1988) Intracellular precursors and secretion of alkaline extracellular protease of Yarrowia lipolytica. Mol Cell Biol 8:4904–4916

    PubMed  CAS  Google Scholar 

  • Matoba S, Morano KA, Klionsky DJ, Kim K, Ogrydziak DM (1997) Dipeptidyl aminopeptidase processing and biosynthesis of alkaline extracellular protease from Yarrowia lipolytica. Microbiology 143(Pt 10):3263–3272

    Article  PubMed  CAS  Google Scholar 

  • McEwen RK, Young TW (1998) Secretion and pH-dependent self-processing of the pro-form of the Yarrowia lipolytica acid extracellular protease. Yeast 14:1115–1125

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Young TW (1987) Extracellular acid and alkaline proteases from Candida olea. J Gen Microbiol 133:1461–1469

    PubMed  CAS  Google Scholar 

  • Ng DT, Brown JD, Walter P (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134:269–278

    Article  PubMed  CAS  Google Scholar 

  • Nicaud J-M, Fabre E, Beckerich JM, Fournier P, Gaillardin C (1989) Cloning, sequencing and amplification of the alkaline extracellular protease (XPR2) gene of the yeast Yarrowia lipolytica. J Biotechnol 12:285–297

    Article  CAS  Google Scholar 

  • Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13:1–55

    Article  PubMed  CAS  Google Scholar 

  • Ogrydziak DM, Mortimer RK (1977) Genetics of extracellular protease production in Saccharomycopsis lipolytica. Genetics 87:621–632

    PubMed  CAS  Google Scholar 

  • Ogrydziak DM, Scharf SJ (1982) Alkaline extracellular protease produced by Saccharomycopsis lipolytica CX161-1B. J Gen Microbiol 128:1225–1234

    PubMed  CAS  Google Scholar 

  • Ogrydziak DM, Demain AL, Tannenbaum SR (1977) Regulation of extracellular protease production in Candida lipolytica. Biochim Biophys Acta 497:525–538

    Article  PubMed  CAS  Google Scholar 

  • Otero RC, Gaillardin C (1996) Dominant mutations affecting expression of pH-regulated genes in Yarrowia lipolytica. Mol Gen Genet 252:311–319

    Article  PubMed  CAS  Google Scholar 

  • Ozcan S, Dover J, Rosenwald AG, Wolf S, Johnston M (1996) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93:12428–12432

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    Article  PubMed  CAS  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  PubMed  CAS  Google Scholar 

  • Sherman DJ, Martin T, Nikolski M, Cayla C, Souciet JL, Durrens P (2009) Genolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res 37:D550–D554

    Article  PubMed  CAS  Google Scholar 

  • Thevenieau F, Nicaud J-M, Gaillardin C (2009) Applications of non-conventional yeast Yarrowia lipolytica. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 580–613

    Google Scholar 

  • Toikkanen JH, Sundqvist L, Keranen S (2004) Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed. Yeast 21:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Ogrydziak DM (1983) Extracellular acid proteases produced by Saccharomycopsis lipolytica. J Bacteriol 154:23–31

    PubMed  CAS  Google Scholar 

  • Yaver DS, Matoba S, Ogrydziak DM (1992) A mutation in the signal recognition particle 7S RNA of the yeast Yarrowia lipolytica preferentially affects synthesis of the alkaline extracellular protease: in vivo evidence for translational arrest. J Cell Biol 116:605–616

    Article  PubMed  CAS  Google Scholar 

  • Young TW, Wadeson A, Glover DJ, Quincey RV, Butlin MJ, Kamei EA (1996) The extracellular acid protease gene of Yarrowia lipolytica: sequence and pH-regulated transcription. Microbiology 142(Pt 10):2913–2921

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ogrydziak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ogrydziak, D. (2013). Acid and Alkaline Extracellular Proteases of Yarrowia lipolytica . In: Barth, G. (eds) Yarrowia lipolytica. Microbiology Monographs, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38583-4_2

Download citation

Publish with us

Policies and ethics