Skip to main content

Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and Metabolic Signaling

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 16))

Abstract

The adenylate kinase isoform network is integral to the cellular energetic system and a major player in AMP metabolic signaling circuits. Critical in energy state monitoring and stress response, the dynamic behavior of the adenylate kinase network in governing intracellular, nuclear, and extracellular nucleotide signaling processes has been increasingly revealed. New adenylate kinase mutations have been identified that cause severe human disease phenotypes such as reticular dysgenesis associated with immunodeficiency and sensorineural hearing loss and primary ciliary dyskinesia characteristic of chronic obstructive pulmonary disease. The adenylate kinase family comprises nine major isoforms (AK1–AK9), and several subforms with distinct intracellular localization and kinetic properties designed to support specific cellular processes ranging from muscle contraction, electrical activity, cell motility, unfolded protein response, and mitochondrial/nuclear energetics. Adenylate kinase and AMP signaling is necessary for energetic communication between mitochondria, myofibrils, and the cell nucleus and for metabolic programming facilitating stem cell cardiac differentiation and mitochondrial network formation. Moreover, it was discovered that during cell cycle, the AK1 isoform translocates to the nucleus and associates with the mitotic spindle to provide energy for cell division. Furthermore, deletion of Ak2 gene is embryonically lethal, indicating critical significance of catalyzed phosphotransfer in the crowded mitochondrial intracristae and subcellular spaces for ATP export and intracellular distribution. Taken together, new evidence highlights the importance of the system-wide adenylate kinase isoform network and adenylate kinase-mediated phosphotransfer and AMP signaling in cellular energetics, metabolic sensing, and regulation of nuclear and cell cycle processes which are critical in tissue homeostasis, renewal, and regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amiri M, Conserva F, Panayiotou C, Karlsson A, Solaroli N (2013) The human adenylate kinase 9 is a nucleoside mono- and diphosphate kinase. Int J Biochem Cell Biol 45(5):925–31

    PubMed  CAS  Google Scholar 

  • Bhaskara V, Dupre A, Lengsfeld B, Hopkins BB, Chan A, Lee JH, Zhang X, Gautier J, Zakian V, Paull TT (2007) Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. Mol Cell 25:647–61

    PubMed  CAS  Google Scholar 

  • Bonilha VL, Bhattacharya SK, West KA, Sun J, Crabb JW, Rayborn ME, Hollyfield JG (2004) Proteomic characterization of isolated retinal pigment epithelium microvilli. Mol Cell Proteomics 3:1119–27

    PubMed  CAS  Google Scholar 

  • Borglund E, Brolin SE, Agren A (1978) Adenylate kinase activity in various organs and tissues of mice with the obese-hyperglycemic syndrome (gene symbol Ob/Ob). J Histochem Cytochem 26:127–30

    PubMed  CAS  Google Scholar 

  • Burkart A, Shi X, Chouinard M, Corvera S (2010) Adenylate kinase 2 links mitochondrial energy metabolism to the induction of the unfolded protein response. J Biol Chem 286:4081–89

    PubMed  Google Scholar 

  • Camara Mde L, Bouvier LA, Canepa GE, Miranda MR, Pereira CA (2013) Molecular and functional characterization of a Trypanosoma cruzi nuclear adenylate kinase isoform. PLoS Negl Trop Dis 7:e2044

    PubMed  Google Scholar 

  • Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183:129–41

    PubMed  CAS  Google Scholar 

  • Cao W, Haig-Ladewig L, Gerton GL, Moss SB (2006) Adenylate kinases 1 and 2 are part of the accessory structures in the mouse sperm flagellum. Biol Reprod 75:492–500

    PubMed  CAS  Google Scholar 

  • Carrasco AJ, Dzeja PP, Alekseev AE, Pucar D, Zingman LV, Abraham MR, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzic A (2001) Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci USA 98:7623–28

    PubMed  CAS  Google Scholar 

  • Chen RP, Liu CY, Shao HL, Zheng WW, Wang JX, Zhao XF (2012) Adenylate kinase 2 (AK2) promotes cell proliferation in insect development. BMC Mol Biol 13:31

    PubMed  Google Scholar 

  • Cheng X, Xu Z, Wang J, Zhai Y, Lu Y, Liang C (2011) ATP-dependent pre-replicative complex assembly is facilitated by Adk1p in budding yeast. J Biol Chem 285:29974–80

    Google Scholar 

  • Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A (2007) Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 4(Suppl 1):S60–S67

    PubMed  CAS  Google Scholar 

  • Chung S, Dzeja PP, Faustino RS, Terzic A (2008) Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis. Ann N Y Acad Sci 1147:254–63

    PubMed  CAS  Google Scholar 

  • Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP (2010) Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol 48:725–34

    PubMed  CAS  Google Scholar 

  • Collavin L, Lazarevic D, Utrera R, Marzinotto S, Monte M, Schneider C (1999) wt p53 dependent expression of a membrane-associated isoform of adenylate kinase. Oncogene 18:5879–88

    PubMed  CAS  Google Scholar 

  • Daily MD, Phillips GN Jr, Cui Q (2010) Many local motions cooperate to produce the adenylate kinase conformational transition. J Mol Biol 400:618–31

    PubMed  CAS  Google Scholar 

  • Daily MD, Makowski L, Phillips GN Jr, Cui Q (2012) Large-scale motions in the adenylate kinase solution ensemble: coarse-grained simulations and comparison with solution X-ray scattering. Chem Phys 396:84–91

    PubMed  CAS  Google Scholar 

  • Domian IJ, Quon KC, Shapiro L (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90:415–24

    PubMed  CAS  Google Scholar 

  • Dzeja PP, Terzic A (1998) Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J 12:523–29

    PubMed  CAS  Google Scholar 

  • Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–47

    PubMed  CAS  Google Scholar 

  • Dzeja PP, Terzic A (2007) Mitochondria-nucleus energetic communication: role for phosphotransfer networks in processing cellular information. In: Gibson G, Dienel G (eds) Brain energetics: integration of molecular and cellular processes. Springer, New York, pp 641–66

    Google Scholar 

  • Dzeja P, Terzic A (2009) Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10:1729–72

    PubMed  CAS  Google Scholar 

  • Dzeja P, Kalvenas A, Toleikis A, Praskevicius A (1985) The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase. Biochem Int 10:259–65

    PubMed  CAS  Google Scholar 

  • Dzeja PP, Zeleznikar RJ, Goldberg ND (1998) Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 184:169–82

    PubMed  CAS  Google Scholar 

  • Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci USA 99:10156–61

    PubMed  CAS  Google Scholar 

  • Dzeja P, Chung S, Terzic A (2007a) Integration of adenylate kinase, glycolytic and glycogenolytic circuits in cellular energetics. In: Saks V (ed) Molecular system bioenergetics: energy for life. Wiley-VCH, Weinheim, Germany, pp 265–301

    Google Scholar 

  • Dzeja PP, Bast P, Pucar D, Wieringa B, Terzic A (2007b) Defective metabolic signaling in adenylate kinase AK1 gene knock-out hearts compromises post-ischemic coronary reflow. J Biol Chem 282:31366–72

    PubMed  CAS  Google Scholar 

  • Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A (2011a) Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS One 6:e19300

    PubMed  CAS  Google Scholar 

  • Dzeja PP, Hoyer K, Tian R, Zhang S, Nemutlu E, Spindler M, Ingwall JS (2011b) Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency. J Physiol 589:5193–211

    PubMed  CAS  Google Scholar 

  • Feng X, Yang R, Zheng X, Zhang F (2012) Identification of a novel nuclear-localized adenylate kinase 6 from Arabidopsis thaliana as an essential stem growth factor. Plant Physiol Biochem 61:180–6

    PubMed  CAS  Google Scholar 

  • Fernandez-Gonzalez A, Kourembanas S, Wyatt TA, Mitsialis SA (2009) Mutation of murine adenylate kinase 7 underlies a primary ciliary dyskinesia phenotype. Am J Respir Cell Mol Biol 40:305–13

    PubMed  CAS  Google Scholar 

  • Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011a) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–71

    PubMed  CAS  Google Scholar 

  • Folmes CD, Nelson TJ, Terzic A (2011b) Energy metabolism in nuclear reprogramming. Biomark Med 5:715–29

    PubMed  CAS  Google Scholar 

  • Folmes CD, Dzeja PP, Nelson TJ, Terzic A (2012a) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11:596–606

    PubMed  CAS  Google Scholar 

  • Folmes CD, Nelson TJ, Dzeja PP, Terzic A (2012b) Energy metabolism plasticity enables stemness programs. Ann N Y Acad Sci 1254:82–9

    PubMed  CAS  Google Scholar 

  • Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, Ghezzi P (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA 99:3505–10

    PubMed  CAS  Google Scholar 

  • Fujisawa K, Murakami R, Horiguchi T, Noma T (2009) Adenylate kinase isozyme 2 is essential for growth and development of Drosophila melanogaster. Comp Biochem Physiol B Biochem Mol Biol 153:29–38

    PubMed  Google Scholar 

  • Fulvia GB, Antonio P, Anna N, Patrizia S, Ada A, Egidio B, Andrea M (2011) Adenylate kinase locus 1 polymorphism and feto-placental development. Eur J Obstet Gynecol Reprod Biol 159:273–75

    PubMed  CAS  Google Scholar 

  • Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang YA, Chin L, Depinho RA (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468:701–4

    PubMed  CAS  Google Scholar 

  • Gillette PC, Claycomb WC (1974) Thymidine kinase activity in cardiac muscle during embryomic and postnatal development. Biochem J 142:685–90

    PubMed  CAS  Google Scholar 

  • Ginger ML, Ngazoa ES, Pereira CA, Pullen TJ, Kabiri M, Becker K, Gull K, Steverding D (2005) Intracellular positioning of isoforms explains an unusually large adenylate kinase gene family in the parasite Trypanosoma brucei. J Biol Chem 280:11781–89

    PubMed  CAS  Google Scholar 

  • Gloria-Bottini F, Antonacci E, Cozzoli E, De Acetis C, Bottini E (2011) The effect of genetic variability on the correlation between blood glucose and glycated hemoglobin levels. Metabolism 60:250–5

    PubMed  CAS  Google Scholar 

  • Gloria-Bottini F, Nicotra M, Amante A, Pietropolli A, Neri A, Bottini E, Magrini A (2012) Adenylate kinase genetic polymorphism and spontaneous abortion. Am J Hum Biol 24:186–8

    PubMed  Google Scholar 

  • Gloria-Bottini F, Neri A, Pietropolli A, Bottini E, Magrini A (2013) Ak(1) genetic polymorphism and season of conception. Eur J Obstet Gynecol Reprod Biol 166:161–3

    PubMed  CAS  Google Scholar 

  • Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park PJ, Shirihai OS, Scadden DT, Bardeesy N (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468:659–63

    PubMed  CAS  Google Scholar 

  • Hand NJ, Master ZR, Eauclaire SF, Weinblatt DE, Matthews RP, Friedman JR (2009) The microRNA-30 family is required for vertebrate hepatobiliary development. Gastroenterology 136:1081–90

    PubMed  CAS  Google Scholar 

  • Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–6

    PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–3

    PubMed  CAS  Google Scholar 

  • Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC (2006) Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol 26:3514–26

    PubMed  CAS  Google Scholar 

  • Inouye S, Seo M, Yamada Y, Nakazawa A (1998) Increase of adenylate kinase isozyme 1 protein during neuronal differentiation in mouse embryonal carcinoma P19 cells and in rat brain primary cultured cells. J Neurochem 71:125–33

    PubMed  CAS  Google Scholar 

  • Jan YH, Tsai HY, Yang CJ, Huang MS, Yang YF, Lai TC, Lee CH, Jeng YM, Huang CY, Su JL, Chuang YJ, Hsiao M (2012) Adenylate kinase-4 is a marker of poor clinical outcomes that promotes metastasis of lung cancer by downregulating the transcription factor ATF3. Cancer Res 72:5119–29

    PubMed  CAS  Google Scholar 

  • Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H (2009) LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 89:777–98

    PubMed  CAS  Google Scholar 

  • Janssen E, Dzeja PP, Oerlemans F, Simonetti AW, Heerschap A, de Haan A, Rush PS, Terjung RR, Wieringa B, Terzic A (2000) Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement. EMBO J 19:6371–81

    PubMed  CAS  Google Scholar 

  • Janssen E, Kuiper J, Hodgson D, Zingman LV, Alekseev AE, Terzic A, Wieringa B (2004) Two structurally distinct and spatially compartmentalized adenylate kinases are expressed from the AK1 gene in mouse brain. Mol Cell Biochem 256–7:59–72

    Google Scholar 

  • Juhnke H, Charizanis C, Latifi F, Krems B, Entian KD (2000) The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 35:936–48

    PubMed  CAS  Google Scholar 

  • Kim J, Shen R, Olcott MC, Rajagopal I, Mathews CK (2005) Adenylate kinase of Escherichia coli, a component of the phage T4 dNTP synthetase complex. J Biol Chem 280:28221–29

    PubMed  CAS  Google Scholar 

  • Klier H, Magdolen V, Schricker R, Strobel G, Lottspeich F, Bandlow W (1996) Cytoplasmic and mitochondrial forms of yeast adenylate kinase 2 are N-acetylated. Biochim Biophys Acta 1280:251–6

    PubMed  Google Scholar 

  • Kuehnel MP, Reiss M, Anand PK, Treede I, Holzer D, Hoffmann E, Klapperstueck M, Steinberg TH, Markwardt F, Griffiths G (2009) Sphingosine-1-phosphate receptors stimulate macrophage plasma-membrane actin assembly via ADP release, ATP synthesis and P2X7R activation. J Cell Sci 122:505–12

    PubMed  CAS  Google Scholar 

  • Lagresle-Peyrou C, Six EM, Picard C, Rieux-Laucat F, Michel V, Ditadi A, Demerens-de Chappedelaine C, Morillon E, Valensi F, Simon-Stoos KL, Mullikin JC, Noroski LM, Besse C, Wulffraat NM, Ferster A, Abecasis MM, Calvo F, Petit C, Candotti F, Abel L, Fischer A, Cavazzana-Calvo M (2009) Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 41:106–11

    PubMed  CAS  Google Scholar 

  • Lin JF, Wu S, Huang SS, Lu BY, Lin SM, Tsai SK (2011) Resveratrol protects left ventricle by increasing adenylate kinase and isocitrate dehydrogenase activities in rats with myocardial infarction. Chin J Physiol 54:406–12

    PubMed  CAS  Google Scholar 

  • Liu R, Strom AL, Zhai J, Gal J, Bao S, Gong W, Zhu H (2009) Enzymatically inactive adenylate kinase 4 interacts with mitochondrial ADP/ATP translocase. Int J Biochem Cell Biol 41:1371–80

    PubMed  CAS  Google Scholar 

  • Liu Z, Yue S, Chen X, Kubin T, Braun T (2010) Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1. Circ Res 106:1498–1506

    PubMed  CAS  Google Scholar 

  • Malekkou A, Lederer CW, Lamond AI, Santama N (2010) The nuclear ATPase/adenylate kinase hCINAP is recruited to perinucleolar caps generated upon RNA pol.II inhibition. FEBS Lett 584:4559–64

    PubMed  CAS  Google Scholar 

  • Mandal S, Guptan P, Owusu-Ansah E, Banerjee U (2005) Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev Cell 9:843–54

    PubMed  CAS  Google Scholar 

  • Mandal S, Freije WA, Guptan P, Banerjee U (2010) Metabolic control of G1-S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J Cell Biol 188:473–9

    PubMed  CAS  Google Scholar 

  • Meng G, Zhai R, Liu B, Zheng X (2008) Identification of a novel nuclear-localized adenylate kinase from Drosophila melanogaster. Biochemistry (Mosc) 73:38–43

    CAS  Google Scholar 

  • Miyoshi K, Akazawa Y, Horiguchi T, Noma T (2009) Localization of adenylate kinase 4 in mouse tissues. Acta Histochem Cytochem 42:55–64

    PubMed  CAS  Google Scholar 

  • Morettini S, Podhraski V, Lusser A (2008) ATP-dependent chromatin remodeling enzymes and their various roles in cell cycle control. Front Biosci 13:5522–32

    PubMed  CAS  Google Scholar 

  • Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation–AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574:63–71

    PubMed  CAS  Google Scholar 

  • Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468:653–8

    PubMed  CAS  Google Scholar 

  • Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4

    Google Scholar 

  • Nemutlu E, Juranic N, Zhang S, Ward LE, Dutta T, Nair KS, Terzic A, Macura S, Dzeja PP (2012a) Electron spray ionization mass spectrometry and 2D (31)P NMR for monitoring (18)O/(16)O isotope exchange and turnover rates of metabolic oligophosphates. Anal Bioanal Chem 403(3):697–706

    PubMed  CAS  Google Scholar 

  • Nemutlu E, Zhang S, Gupta A, Juranic NO, Macura SI, Terzic A, Jahangir A, Dzeja P (2012b) Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted 31P NMR and mass spectrometry. Physiol Genomics 44(7):386–402

    PubMed  CAS  Google Scholar 

  • Noda L (1973) Adenylate kinase. In: Boyer P (ed) The enzymes, 3rd edn. Academic, New York, pp 279–305

    Google Scholar 

  • Noma T (2005) Dynamics of nucleotide metabolism as a supporter of life phenomena. J Med Invest 52:127–36

    PubMed  Google Scholar 

  • Ottaway JH, Mowbray J (1977) The role of compartmentation in the control of glycolysis. Curr Top Cell Regul 12:107–208

    PubMed  CAS  Google Scholar 

  • Panayiotou C, Solaroli N, Johansson M, Karlsson A (2010) Evidence of an intact N-terminal translocation sequence of human mitochondrial adenylate kinase 4. Int J Biochem Cell Biol 42:62–9

    PubMed  CAS  Google Scholar 

  • Panayiotou C, Solaroli N, Xu Y, Johansson M, Karlsson A (2011) The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic parameters and structural organization among the family of adenylate kinase isoenzymes. Biochem J 433:527–34

    PubMed  CAS  Google Scholar 

  • Pannicke U, Honig M, Hess I, Friesen C, Holzmann K, Rump EM, Barth TF, Rojewski MT, Schulz A, Boehm T, Friedrich W, Schwarz K (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41:101–5

    PubMed  CAS  Google Scholar 

  • Park H, Kam TI, Kim Y, Choi H, Gwon Y, Kim C, Koh JY, Jung YK (2012) Neuropathogenic role of adenylate kinase-1 in Abeta-mediated tau phosphorylation via AMPK and GSK3beta. Hum Mol Genet 21:2725–37

    PubMed  CAS  Google Scholar 

  • Peng X, Wang L, Chen G, Wang X (2012) Dynamic expression of adenylate kinase 2 in the hippocampus of pilocarpine model rats. J Mol Neurosci 47:150–7

    PubMed  CAS  Google Scholar 

  • Ptacin JL, Shapiro L (2013) Chromosome architecture is a key element of bacterial cellular organization. Cell Microbiol 15:45–52

    PubMed  CAS  Google Scholar 

  • Pucar D, Janssen E, Dzeja PP, Juranic N, Macura S, Wieringa B, Terzic A (2000) Compromised energetics in the adenylate kinase AK1 gene knockout heart under metabolic stress. J Biol Chem 275:41424–29

    PubMed  CAS  Google Scholar 

  • Pucar D, Bast P, Gumina RJ, Lim L, Drahl C, Juranic N, Macura S, Janssen E, Wieringa B, Terzic A, Dzeja PP (2002) Adenylate kinase AK1 knockout heart: energetics and functional performance under ischemia-reperfusion. Am J Physiol Heart Circ Physiol 283:H776–H782

    PubMed  CAS  Google Scholar 

  • Rahlfs S, Koncarevic S, Iozef R, Mailu BM, Savvides SN, Schirmer RH, Becker K (2009) Myristoylated adenylate kinase-2 of Plasmodium falciparum forms a heterodimer with myristoyltransferase. Mol Biochem Parasitol 163:77–84

    PubMed  CAS  Google Scholar 

  • Randak CO, Ver Heul AR, Welsh MJ (2012) Demonstration of phosphoryl group transfer indicates that the ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) exhibits adenylate kinase activity. J Biol Chem 287:36105–10

    PubMed  CAS  Google Scholar 

  • Ren H, Wang L, Bennett M, Liang Y, Zheng X, Lu F, Li L, Nan J, Luo M, Eriksson S, Zhang C, Su XD (2005) The crystal structure of human adenylate kinase 6: an adenylate kinase localized to the cell nucleus. Proc Natl Acad Sci USA 102:303–8

    PubMed  CAS  Google Scholar 

  • Romito A, Lonardo E, Roma G, Minchiotti G, Ballabio A, Cobellis G (2010) Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2. PLoS One 5:e9029

    PubMed  Google Scholar 

  • Rosenfeld SS, van Duffelen M, Behnke-Parks WM, Beadle C, Corrreia J, Xing J (2009) The ATPase cycle of the mitotic motor CENP-E. J Biol Chem 284:32858–868

    PubMed  CAS  Google Scholar 

  • Ruan Q, Chen Y, Gratton E, Glaser M, Mantulin WW (2002) Cellular characterization of adenylate kinase and its isoform: two-photon excitation fluorescence imaging and fluorescence correlation spectroscopy. Biophys J 83:3177–87

    PubMed  CAS  Google Scholar 

  • Rubart M, Field LJ (2006) Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68:29–49

    PubMed  CAS  Google Scholar 

  • Santama N, Ogg SC, Malekkou A, Zographos SE, Weis K, Lamond AI (2005) Characterization of hCINAP, a novel coilin-interacting protein encoded by a transcript from the transcription factor TAFIID32 locus. J Biol Chem 280:36429–441

    PubMed  CAS  Google Scholar 

  • Seccia TM, Atlante A, Vulpis V, Marra E, Passarella S, Pirrelli A (1998) Mitochondrial energy metabolism in the left ventricular tissue of spontaneously hypertensive rats: abnormalities in both adeninenucleotide and phosphate translocators and enzyme adenylate-kinase and creatine-phosphokinase activities. Clin Exp Hypertens 20:345–58

    PubMed  CAS  Google Scholar 

  • Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–91

    PubMed  CAS  Google Scholar 

  • Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M, Gusella JF, Laramie JM, Myers RH, Lesort M, MacDonald ME (2005) HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 14:2871–80

    PubMed  CAS  Google Scholar 

  • Shi Q, Feng J, Qu H, Cheng YY (2008) A proteomic study of S-nitrosylation in the rat cardiac proteins in vitro. Biol Pharm Bull 31:1536–40

    PubMed  CAS  Google Scholar 

  • Solaroli N, Panayiotou C, Johansson M, Karlsson A (2009) Identification of two active functional domains of human adenylate kinase 5. FEBS Lett 583:2872–76

    PubMed  CAS  Google Scholar 

  • Stanojevic V, Habener JF, Holz GG, Leech CA (2008) Cytosolic adenylate kinases regulate K-ATP channel activity in human beta-cells. Biochem Biophys Res Commun 368:614–9

    PubMed  CAS  Google Scholar 

  • Strobel G, Zollner A, Angermayr M, Bandlow W (2002) Competition of spontaneous protein folding and mitochondrial import causes dual subcellular location of major adenylate kinase. Mol Biol Cell 13:1439–48

    PubMed  CAS  Google Scholar 

  • Szappanos B, Kovacs K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, Gelius-Dietrich G, Lercher MJ, Jelasity M, Myers CL, Andrews BJ, Boone C, Oliver SG, Pal C, Papp B (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43:656–62

    PubMed  CAS  Google Scholar 

  • Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW (2008) An in vivo map of the yeast protein interactome. Science 320:1465–70

    PubMed  CAS  Google Scholar 

  • Tuzun E, Rossi JE, Karner SF, Centurion AF, Dalmau J (2007) Adenylate kinase 5 autoimmunity in treatment refractory limbic encephalitis. J Neuroimmunol 186:177–80

    PubMed  Google Scholar 

  • van Horssen R, Janssen E, Peters W, van de Pasch L, Lindert MM, van Dommelen MM, Linssen PC, Hagen TL, Fransen JA, Wieringa B (2009) Modulation of cell motility by spatial repositioning of enzymatic ATP/ADP exchange capacity. J Biol Chem 284:1620–27

    PubMed  Google Scholar 

  • Van Rompay AR, Johansson M, Karlsson A (1999) Identification of a novel human adenylate kinase. cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein. Eur J Biochem 261:509–17

    PubMed  Google Scholar 

  • Vasseur S, Malicet C, Calvo EL, Dagorn JC, Iovanna JL (2005) Gene expression profiling of tumours derived from rasV12/E1A-transformed mouse embryonic fibroblasts to identify genes required for tumour development. Mol Cancer 4:4

    PubMed  Google Scholar 

  • Vogel P, Read RW, Hansen GM, Payne BJ, Small D, Sands AT, Zambrowicz BP (2012) Congenital hydrocephalus in genetically engineered mice. Vet Pathol 49:166–81

    PubMed  CAS  Google Scholar 

  • Walker EJ, Dow JW (1982) Location and properties of two isoenzymes of cardiac adenylate kinase. Biochem J 203:361–9

    PubMed  CAS  Google Scholar 

  • Walsh S, Ponten A, Fleischmann BK, Jovinge S (2010) Cardiomyocyte cell cycle control and growth estimation in vivo–an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86:365–73

    PubMed  CAS  Google Scholar 

  • Wirschell M, Pazour G, Yoda A, Hirono M, Kamiya R, Witman GB (2004) Oda5p, a novel axonemal protein required for assembly of the outer dynein arm and an associated adenylate kinase. Mol Biol Cell 15:2729–41

    PubMed  CAS  Google Scholar 

  • Woulfe KC, Gao E, Lal H, Harris D, Fan Q, Vagnozzi R, DeCaul M, Shang X, Patel S, Woodgett JR, Force T, Zhou J (2010) Glycogen synthase kinase-3beta regulates post-myocardial infarction remodeling and stress-induced cardiomyocyte proliferation in vivo. Circ Res 106:1635–45

    PubMed  CAS  Google Scholar 

  • Yoneda T, Sato M, Maeda M, Takagi H (1998) Identification of a novel adenylate kinase system in the brain: cloning of the fourth adenylate kinase. Brain Res Mol Brain Res 62:187–95

    PubMed  CAS  Google Scholar 

  • Zhai R, Meng G, Zhao Y, Liu B, Zhang G, Zheng X (2006) A novel nuclear-localized protein with special adenylate kinase properties from Caenorhabditis elegans. FEBS Lett 580:3811–17

    PubMed  CAS  Google Scholar 

  • Zhang J, Zhang F, Zheng X (2010a) Depletion of hCINAP by RNA interference causes defects in Cajal body formation, histone transcription, and cell viability. Cell Mol Life Sci 67:1907–18

    PubMed  CAS  Google Scholar 

  • Zhang S, Nemutlu E, Dzeja P (2010b) Metabolomic profiling of adenylate kinase AK1−/− and AK2+/− transgenic mice: effect of physical stress. Circulation 122, A20435

    Google Scholar 

  • Zhang S, Nemutlu E, Terzic A, Dzeja P (2012) Adenylate kinase phosphotransfer and AMP signaling regulate cardiomyocyte cell cycle and heart regenerative capacity. Circulation 126, A18852

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health, Marriott Heart Disease Research Program, Marriott Foundation, and Mayo Clinic. We thank Mayo Graduate School student Jennifer Shing for reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petras Dzeja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, S., Nemutlu, E., Terzic, A., Dzeja, P. (2014). Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and Metabolic Signaling. In: Aon, M., Saks, V., Schlattner, U. (eds) Systems Biology of Metabolic and Signaling Networks. Springer Series in Biophysics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38505-6_6

Download citation

Publish with us

Policies and ethics