Skip to main content

Complex Systems Biology of Networks: The Riddle and the Challenge

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 16))

Abstract

There is no direct relationship between metabolite, mRNA, protein, and gene; the expression of a gene is not necessarily correlated with the abundance of the corresponding protein product, and the activity of a protein may depend on posttranslational modifications, e.g., phosphorylation, redox-modulation/modification, and acetylation. It is believed that the diverse nature and outcomes of networks composed of genes, transcripts, proteins, and metabolites remain an obstacle for tracing the flux from genes to proteins in order to be able to capture or explain developmental programs or the underlying mechanisms of a disease. A different approach is needed to address this problem, and accordingly an alternative view based on the dynamic integration of three different kinds of networks, mass–energy, information, and signaling, is proposed and developed in this chapter. From this perspective, the spatio-temporal expression of mass–energy transformation and information-carrying networks is modulated by signaling networks associated with fundamental cellular processes such as cell division, differentiation, and autophagy. The dynamic network of reaction fluxes (i.e., the fluxome) represents the ultimate integrative outcome of the whole process. This approach—which accounts for the basic biological fact that cells and organisms make themselves—can only be realized by networks connected by overall cyclic topologies. Thereby, the output of mass–energy/information networks, composed of proteins, transcriptional factors, metabolites, is at the same time input for signaling networks which output activates or represses those same networks that produced them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggarwal NT, Makielski JC (2013) Redox control of cardiac excitability. Antioxid Redox Signal 18:432–68

    Article  PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–25

    Article  PubMed  Google Scholar 

  • Aon MA, Cortassa S (1997) Dynamic biological organization. Fundamentals as applied to cellular systems. Chapman & Hall, London

    Book  Google Scholar 

  • Aon MA, Cortassa S (2009) Chaotic dynamics, noise and fractal space in biochemistry. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, New York

    Google Scholar 

  • Aon MA, Cortassa S (2012) Mitochondrial network energetics in the heart. Wiley Interdiscip Rev Syst Biol Med 4:599–613

    Article  PubMed  CAS  Google Scholar 

  • Aon MA, Cortassa S, Lloyd D (2012a) Chaos in biochemistry and physiology. In: Meyers R (ed) Encyclopedia of molecular cell biology and molecular medicine: systems biology. Weinheim, Wiley-VCH

    Google Scholar 

  • Aon MA, Cortassa S, O’Rourke B (2007) On the network properties of mitochondria. In: Saks V (ed) Molecular system bioenergetics: energy for life. Wiley-VCH, Weinheim, pp 111–35

    Chapter  Google Scholar 

  • Aon MA, O’Rourke B, Cortassa S (2004) The fractal architecture of cytoplasmic organization: scaling, kinetics and emergence in metabolic networks. Mol Cell Biochem 256–257:169–84

    Article  PubMed  Google Scholar 

  • Aon MA, Roussel MR, Cortassa S, O’Rourke B, Murray DB, Beckmann M, Lloyd D (2008) The scale-free dynamics of eukaryotic cells. PLoS One 3:e3624

    Article  PubMed  Google Scholar 

  • Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O’Rourke B, Paolocci N, Cortassa S (2012b) Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J Gen Physiol 139:479–91

    Article  PubMed  CAS  Google Scholar 

  • Barabasi AL (2009) Scale-free networks: a decade and beyond. Science 325:412–3

    Article  PubMed  CAS  Google Scholar 

  • Berndt C, Lillig CH, Holmgren A (2007) Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292:H1227–36

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US (2003) Understanding complex signaling networks through models and metaphors. Prog Biophys Mol Biol 81:45–65

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–7

    Article  PubMed  CAS  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–4

    Article  PubMed  CAS  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–60

    Article  PubMed  CAS  Google Scholar 

  • Capra F (1996) The web of life. Anchor books Doubleday, New York

    Google Scholar 

  • Cascante M, Marin S (2008) Metabolomics and fluxomics approaches. Essays Biochem 45:67–81

    Article  PubMed  CAS  Google Scholar 

  • Chiu J, Dawes IW (2012) Redox control of cell proliferation. Trends Cell Biol 22:592–601

    Article  PubMed  CAS  Google Scholar 

  • Cho DY, Kim YA, Przytycka TM (2012) Chapter 5: Network biology approach to complex diseases. PLoS Comput Biol 8:e1002820

    Article  PubMed  CAS  Google Scholar 

  • Cortassa S, Aon MA, Iglesias AA, Aon JC, Lloyd D (2012) An introduction to Metabolic and Cellular Engineering, 2nd edn. World Scientific, Singapore

    Google Scholar 

  • Cortassa S, O’Rourke B, Winslow RL, Aon MA (2009a) Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. Biophys J 96:2466–78

    Article  PubMed  CAS  Google Scholar 

  • Cortassa S, O’Rourke B, Winslow RL, Aon MA (2009b) Control and regulation of integrated mitochondrial function in metabolic and transport networks. Int J Mol Sci 10:1500–13

    Article  PubMed  CAS  Google Scholar 

  • D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–24

    Article  PubMed  Google Scholar 

  • Dwivedi G, Kemp ML (2012) Systemic redox regulation of cellular information processing. Antioxid Redox Signal 16:374–80

    Article  PubMed  CAS  Google Scholar 

  • Eungdamrong NJ, Iyengar R (2004) Computational approaches for modeling regulatory cellular networks. Trends Cell Biol 14:661–9

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476:52–4

    Article  PubMed  CAS  Google Scholar 

  • Fox KE (2000) The century of the gene. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gherardini PF, Helmer-Citterich M (2013) Experimental and computational methods for the analysis and modeling of signaling networks. N Biotechnol 30:327–32

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi P, Di Simplicio P (2009) Protein glutathiolation. In: Jacob C, Winyard PG (eds) Redox signaling and regulation in biology and medicine. Weinheim, WILEY-VCH Verlag Gmbh & Co. KGaA, pp 123–41

    Chapter  Google Scholar 

  • Griffin JL (2006) The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philos Trans R Soc Lond B Biol Sci 361:147–61

    Article  PubMed  Google Scholar 

  • Haddad JJ (2004) Oxygen sensing and oxidant/redox-related pathways. Biochem Biophys Res Commun 316:969–77

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23:1112–9

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG, Salt IP, Hawley SA, Davies SP (1999) AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem J 338(Pt 3):717–22

    Article  PubMed  CAS  Google Scholar 

  • Hugo M, Turell L, Manta B, Botti H, Monteiro G, Netto LE, Alvarez B, Radi R, Trujillo M (2009) Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry 48:9416–26

    Article  PubMed  CAS  Google Scholar 

  • Jeong EM, Liu M, Sturdy M, Gao G, Varghese ST, Sovari AA, Dudley SC Jr (2012) Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol 52:454–63

    Article  PubMed  CAS  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–93

    Article  PubMed  CAS  Google Scholar 

  • Kembro JM, Cortassa S, Aon MA (2013) Mitochondrial ROS and arrhythmias. In: Laher I (ed) Systems biology of free radicals and anti-oxidants. Springer, Heidelberg

    Google Scholar 

  • Kholodenko B, Yaffe MB, Kolch W (2012) Computational approaches for analyzing information flow in biological networks. Sci Signal 5:re1

    Article  PubMed  Google Scholar 

  • Kiel C, Yus E, Serrano L (2010) Engineering signal transduction pathways. Cell 140:33–47

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–4

    Article  PubMed  CAS  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–67

    Article  PubMed  CAS  Google Scholar 

  • Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci USA 101:1200–5

    Article  PubMed  CAS  Google Scholar 

  • Lago CU, Sung HJ, Ma W, Wang PY, Hwang PM (2011) p53, aerobic metabolism, and cancer. Antioxid Redox Signal 15:1739–48

    Article  PubMed  CAS  Google Scholar 

  • Leloup C, Casteilla L, Carriere A, Galinier A, Benani A, Carneiro L, Penicaud L (2011) Balancing mitochondrial redox signaling: a key point in metabolic regulation. Antioxid Redox Signal 14:519–30

    Article  PubMed  CAS  Google Scholar 

  • Li L, Chen Y, Gibson SB (2013) Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 25:50–65

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AL, Lloyd D (1993) Hypothesis: the central oscillator of the circadian clock is a controlled chaotic attractor. Biosystems 29:77–85

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AL, Lloyd D (1995) Chaos—Its significance and detection in biology. Biol Rhythm Res 26:233–52

    Article  Google Scholar 

  • Lloyd D, Cortassa S, O'Rourke B, Aon MA (2012) What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival. Integr Biol (Camb) 4:65–74

    Article  CAS  Google Scholar 

  • Lloyd D, Murray DB (2005) Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem Sci 30:373–7

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Poole RK, Edwards SW (1982) The cell division cycle: temporal organisation and control of growth and reproduction. Academic, London, p 523

    Google Scholar 

  • Lloyd D, Rossi EL (2008) Epilogue: a new vision of life. In: Lloyd D, Rossi EL (eds) Ultradian rhythms from molecules to mind. Springer Science+Business Media B.V., New York, pp 431–39

    Chapter  Google Scholar 

  • Lloyd D, Stupfel M (1991) The occurrence and functions of ultradian rhythms. Biol Rev Camb Philos Soc 66:275–99

    Article  PubMed  CAS  Google Scholar 

  • Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–7

    Article  PubMed  CAS  Google Scholar 

  • Luisi PL (2006) The emergence of life. From chemical origins to synthetic biology. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D, Hue L (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10:1247–55

    Article  PubMed  CAS  Google Scholar 

  • Maryanovich M, Gross A (2012) A ROS rheostat for cell fate regulation. Trends Cell Biol 23:129–34

    Article  PubMed  Google Scholar 

  • McKnight SL (2010) On getting there from here. Science 330:1338–9

    Article  PubMed  CAS  Google Scholar 

  • Melnik BC (2012) Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes 3:38–53

    Article  PubMed  Google Scholar 

  • Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10:1941–88

    Article  PubMed  CAS  Google Scholar 

  • Mitrea DM, Kriwacki RW (2013) Regulated unfolding of proteins in signaling. FEBS Lett 587:1081–8

    Article  PubMed  CAS  Google Scholar 

  • Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA (2012) Circuitry and dynamics of human transcription factor regulatory networks. Cell 150:1274–86

    Article  PubMed  CAS  Google Scholar 

  • Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5:47–62

    Article  PubMed  CAS  Google Scholar 

  • Poels J, Spasic MR, Callaerts P, Norga KK (2009) Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. Bioessays 31:944–52

    Article  PubMed  CAS  Google Scholar 

  • Pourova J, Kottova M, Voprsalova M, Pour M (2010) Reactive oxygen and nitrogen species in normal physiological processes. Acta Physiol (Oxf) 198:15–35

    Article  CAS  Google Scholar 

  • Przytycka TM, Cho DY (2012) Interactome. In: Meyers RA (ed) Systems biology: advances in molecular biology and medicine. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 85–115

    Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  PubMed  CAS  Google Scholar 

  • Rahman I, Yang SR, Biswas SK (2006) Current concepts of redox signaling in the lungs. Antioxid Redox Signal 8:681–9

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11:230–41

    Article  PubMed  CAS  Google Scholar 

  • Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–93

    Article  PubMed  CAS  Google Scholar 

  • Sasidharan K, Tomita M, Aon M, Lloyd D, Murray DB (2012) Time-structure of the yeast metabolism in vivo. Adv Exp Med Biol 736:359–79

    Article  PubMed  CAS  Google Scholar 

  • Schroder E, Eaton P (2009) Hydrogen peroxide and cysteine protein signaling pathways. In: Jacob C, Winyard PG (eds) Redox signaling and regulation in biology and medicine. Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, pp 181–195

    Chapter  Google Scholar 

  • Stanley BA, Sivakumaran V, Shi S, McDonald I, Lloyd D, Watson WH, Aon MA, Paolocci N (2011) Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria. J Biol Chem 286:33669–77

    Article  PubMed  CAS  Google Scholar 

  • Storz P, Toker A (2003) Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO J 22:109–20

    Article  PubMed  CAS  Google Scholar 

  • Sumandea MP, Steinberg SF (2011) Redox signaling and cardiac sarcomeres. J Biol Chem 286:9921–7

    Article  PubMed  CAS  Google Scholar 

  • Sun XZ, Vinci C, Makmura L, Han S, Tran D, Nguyen J, Hamann M, Grazziani S, Sheppard S, Gutova M, Zhou F, Thomas J, Momand J (2003) Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization. Antioxid Redox Signal 5:655–65

    Article  PubMed  CAS  Google Scholar 

  • Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D (2006) Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 281:32207–16

    Article  PubMed  CAS  Google Scholar 

  • Varela F, Maturana H, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5:187–96

    Article  CAS  Google Scholar 

  • Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 52:7–18

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–49

    Article  PubMed  CAS  Google Scholar 

  • Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    Article  PubMed  Google Scholar 

  • Winterbourn CC, Metodiewa D (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27:322–8

    Article  PubMed  CAS  Google Scholar 

  • Yates FE (1993) Self-organizing systems. In: Boyd CAR, Noble D (eds) The logic of life. The challenge of integrative physiology. Oxford University Press, New York, pp 189–218

    Google Scholar 

Download references

Acknowledgments

This work was performed with the financial support of R01-HL091923 from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Aon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aon, M.A. (2014). Complex Systems Biology of Networks: The Riddle and the Challenge. In: Aon, M., Saks, V., Schlattner, U. (eds) Systems Biology of Metabolic and Signaling Networks. Springer Series in Biophysics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38505-6_2

Download citation

Publish with us

Policies and ethics