Skip to main content

Genetic and Molecular Pathology of Melanoma

  • Chapter
  • 2590 Accesses

Abstract

In so far as neoplastic development and progression involve pathogenic deletions or mutations in critical genes, all cancers are fundamentally genetic. In the specific case of melanoma, the genetic basis of its etiology is reflected in the observation that approximately 10 % of cases result from the familial transmission of melanoma susceptibility loci in the germline. Whereas most melanomas are sporadic, the genetic basis is reflected in acquired or postzygotic lesions at genomic loci within melanocytes that initiate the pathway of neoplastic progression. Notably, the same genes targeted in the germline in familial melanoma, as well as in other cancer syndromes such as Li-Fraumeni syndrome, are involved rather commonly in a broad range of cancer types through the mechanism of random, postzygotic mutations in somatic cells targeted for neoplastic transformation [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Piepkorn MW (1994) Genetic basis of susceptibility to melanoma. J Am Acad Dermatol 31:1022–1039

    Article  CAS  PubMed  Google Scholar 

  2. Piepkorn M (2000) Melanoma genetics: an update with focus on the CDKN2A(p16)/ARF tumor suppressors. J Am Acad Dermatol 42:705–722, quiz 723–726

    Article  CAS  PubMed  Google Scholar 

  3. Rocco JW, Sidransky D (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 264:42–55

    Article  CAS  PubMed  Google Scholar 

  4. Bittner M, Meltzer P, Chen Y et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  CAS  PubMed  Google Scholar 

  5. Gerami P, Jewell SS, Morrison LE et al (2009) Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol 33:1146–1156

    Article  PubMed  Google Scholar 

  6. Ross AL, Sanchez MI, Grichnik JM (2011) Molecular nevogenesis. Dermatol Res Pract 2011:463184. Epub 2011 Apr 6

    Google Scholar 

  7. Scherer D, Rachakonda PS, Angelini S et al (2010) Association between the germline MC1R variants and somatic BRAF/NRAS mutations in melanoma tumors. J Invest Dermatol 130:2844–2848

    Article  CAS  PubMed  Google Scholar 

  8. Hacker E, Hayward NK, Dumenil T, James MR, Whiteman DC (2010) The association between MC1R genotype and BRAF mutation status in cutaneous melanoma: findings from an Australian population. J Invest Dermatol 130:241–248

    Article  CAS  PubMed  Google Scholar 

  9. Fargnoli MC, Pike K, Pfeiffer RM et al (2008) MC1R variants increase risk of melanomas harboring BRAF mutations. J Invest Dermatol 128:2485–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Emery CM, Vijayendran KG, Zipser MC et al (2009) MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA 106:20411–20416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Villanueva J, Vultur A, Lee JT et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. James MR, Roth RB, Shi MM et al (2005) BRAF polymorphisms and risk of melanocytic neoplasia. J Invest Dermatol 125:1252–1258

    Article  CAS  PubMed  Google Scholar 

  14. Goel VK, Ibrahim N, Jiang G et al (2009) Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28:2289–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Zhang Y, Yang Z, Li A, Dong J (2008) Simultaneous knockdown of BRAF and expression of INK4A in melanoma cells leads to potent growth inhibition and apoptosis. Biochem Biophys Res Commun 370:509–513

    Article  CAS  PubMed  Google Scholar 

  16. Cannon-Albright LA, Goldgar DE, Meyer LJ et al (1992) Assignment of a locus for familial melanoma, MLM, to chromosome 9p13–p22. Science 258:1148–1152

    Article  CAS  PubMed  Google Scholar 

  17. Bergman W, Gruis NA, Sandkuijl LA, Frants RR (1994) Genetics of seven Dutch familial atypical multiple mole-melanoma syndrome families: a review of linkage results including chromosomes 1 and 9. J Invest Dermatol 103:122S–125S

    Article  CAS  PubMed  Google Scholar 

  18. Nancarrow DJ, Mann GJ, Holland EA et al (1993) Confirmation of chromosome 9p linkage in familial melanoma. Am J Hum Genet 53:936–942

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldstein AM, Dracopoli NC, Engelstein M, Fraser MC, Clark WH Jr, Tucker MA (1994) Linkage of cutaneous malignant melanoma/dysplastic nevi to chromosome 9p, and evidence for genetic heterogeneity. Am J Hum Genet 54:489–496

    CAS  PubMed  PubMed Central  Google Scholar 

  20. MacGeoch C, Bishop JA, Bataille V et al (1994) Genetic heterogeneity in familial malignant melanoma. Hum Mol Genet 3:2195–2200

    Article  CAS  PubMed  Google Scholar 

  21. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    Article  CAS  PubMed  Google Scholar 

  22. Kamb A, Gruis NA, Weaver-Feldhaus J et al (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–440

    Article  CAS  PubMed  Google Scholar 

  23. Kumar R, Smeds J, Berggren P et al (2001) A single nucleotide polymorphism in the 3’untranslated region of the CDKN2A gene is common in sporadic primary melanomas but mutations in the CDKN2B, CDKN2C, CDK4 and p53 genes are rare. Int J Cancer 95:388–393

    Article  CAS  PubMed  Google Scholar 

  24. Stone S, Jiang P, Dayananth P et al (1995) Complex structure and regulation of the P16 (MTS1) locus. Cancer Res 55:2988–2994

    CAS  PubMed  Google Scholar 

  25. Mao L, Merlo A, Bedi G et al (1995) A novel p16INK4A transcript. Cancer Res 55:2995–2997

    CAS  PubMed  Google Scholar 

  26. Glendening JM, Flores JF, Walker GJ, Stone S, Albino AP, Fountain JW (1995) Homozygous loss of the p15INK4B gene (and not the p16INK4 gene) during tumor progression in a sporadic melanoma patient. Cancer Res 55:5531–5535

    CAS  PubMed  Google Scholar 

  27. Liu Q, Neuhausen S, McClure M et al (1995) CDKN2 (MTS1) tumor suppressor gene mutations in human tumor cell lines. Oncogene 10:1061–1067

    CAS  PubMed  Google Scholar 

  28. Walker GJ, Flores JF, Glendening JM, Lin AH, Markl ID, Fountain JW (1998) Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer 22:157–163

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalgo ML, Bender CM, You EH et al (1997) Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res 57:5336–5347

    CAS  PubMed  Google Scholar 

  30. Straume O, Akslen LA (1997) Alterations and prognostic significance of p16 and p53 protein expression in subgroups of cutaneous melanoma. Int J Cancer 74:535–539

    Article  CAS  PubMed  Google Scholar 

  31. Grover R, Chana JS, Wilson GD, Richman PI, Sanders R (1998) An analysis of p16 protein expression in sporadic malignant melanoma. Melanoma Res 8:267–272

    Article  CAS  PubMed  Google Scholar 

  32. Talve L, Sauroja I, Collan Y, Punnonen K, Ekfors T (1997) Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int J Cancer 74:255–259

    Article  CAS  PubMed  Google Scholar 

  33. Funk JO, Schiller PI, Barrett MT, Wong DJ, Kind P, Sander CA (1998) p16INK4a expression is frequently decreased and associated with 9p21 loss of heterozygosity in sporadic melanoma. J Cutan Pathol 25:291–296

    Article  CAS  PubMed  Google Scholar 

  34. Keller-Melchior R, Schmidt R, Piepkorn M (1998) Expression of the tumor suppressor gene product p16INK4 in benign and malignant melanocytic lesions. J Invest Dermatol 110:932–938

    Article  CAS  PubMed  Google Scholar 

  35. Polsky D, Young AZ, Busam KJ, Alani RM (2001) The transcriptional repressor of p16/Ink4a, Id1, is up-regulated in early melanomas. Cancer Res 61:6008–6011

    CAS  PubMed  Google Scholar 

  36. Reed JA, Loganzo F Jr, Shea CR et al (1995) Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression. Cancer Res 55:2713–2718

    CAS  PubMed  Google Scholar 

  37. Sparrow LE, Eldon MJ, English DR, Heenan PJ (1998) p16 and p21WAF1 protein expression in melanocytic tumors by immunohistochemistry. Am J Dermatopathol 20:255–261

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Schneider J, Rosdahl I (2002) Expression of p16, p27, p53, p73 and Nup88 proteins in matched primary and metastatic melanoma cells. Int J Oncol 21:43–48

    PubMed  Google Scholar 

  39. de Gruijl FR, van Kranen HJ, van Schanke A (2005) UV exposure, genetic targets in melanocytic tumors and transgenic mouse models. Photochem Photobiol 81:52–64

    Article  PubMed  Google Scholar 

  40. Jonsson A, Tuominen R, Grafstrom E, Hansson J, Egyhazi S (2010) High frequency of p16INK4A promoter methylation in NRAS-mutated cutaneous melanoma. J Invest Dermatol 130:2809–2817

    Article  CAS  PubMed  Google Scholar 

  41. Flores JF, Pollock PM, Walker GJ et al (1997) Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene 15:2999–3005

    Article  CAS  PubMed  Google Scholar 

  42. Borg A, Johannsson U, Johannsson O et al (1996) Novel germline p16 mutation in familial malignant melanoma in southern Sweden. Cancer Res 56:2497–2500

    CAS  PubMed  Google Scholar 

  43. Pollock PM, Stark MS, Palmer JM et al (2001) Mutation analysis of the CDKN2A promoter in Australian melanoma families. Genes Chromosomes Cancer 32:89–94

    Article  CAS  PubMed  Google Scholar 

  44. Monzon J, Liu L, Brill H et al (1998) CDKN2A mutations in multiple primary melanomas. N Engl J Med 338:879–887

    Article  CAS  PubMed  Google Scholar 

  45. Auroy S, Avril MF, Chompret A et al (2001) Sporadic multiple primary melanoma cases: CDKN2A germline mutations with a founder effect. Genes Chromosomes Cancer 32:195–202

    Article  CAS  PubMed  Google Scholar 

  46. Hashemi J, Platz A, Ueno T et al (2000) CDKN2A germ-line mutations in individuals with multiple cutaneous melanomas. Cancer Res 60:6864–6867

    CAS  PubMed  Google Scholar 

  47. Gruis NA, van der Velden PA, Sandkuijl LA et al (1995) Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nat Genet 10:351–353

    Article  CAS  PubMed  Google Scholar 

  48. Orlow I, Begg CB, Cotignola J et al (2007) CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J Invest Dermatol 127:1234–1243

    Article  CAS  PubMed  Google Scholar 

  49. Bisio A, Nasti S, Jordan JJ et al (2010) Functional analysis of CDKN2A/p16INK4a 5′-UTR variants predisposing to melanoma. Hum Mol Genet 19:1479–1491

    Article  CAS  PubMed  Google Scholar 

  50. Zhang SY, Klein-Szanto AJ, Sauter ER et al (1994) Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res 54:5050–5053

    CAS  PubMed  Google Scholar 

  51. Spruck CH 3rd, Gonzalez-Zulueta M, Shibata A et al (1994) p16 gene in uncultured tumours. Nature 370:183–184

    Article  PubMed  Google Scholar 

  52. Goldstein AM, Fraser MC, Struewing JP et al (1995) Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations [see comments]. N Engl J Med 333:970–974

    Article  CAS  PubMed  Google Scholar 

  53. Whelan AJ, Bartsch D, Goodfellow PJ (1995) Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N Engl J Med 333:975–977

    Article  CAS  PubMed  Google Scholar 

  54. Ciotti P, Strigini P, Bianchi-Scarra G (1996) Familial melanoma and pancreatic cancer. Ligurian Skin Tumor Study Group. N Engl J Med 334:469–470, discussion 471–472

    Article  CAS  PubMed  Google Scholar 

  55. Hille ET, van Duijn E, Gruis NA, Rosendaal FR, Bergman W, Vandenbroucke JP (1998) Excess cancer mortality in six Dutch pedigrees with the familial atypical multiple mole-melanoma syndrome from 1830 to 1994. J Invest Dermatol 110:788–792

    Article  CAS  PubMed  Google Scholar 

  56. Bishop DT, Demenais F, Goldstein AM et al (2002) Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 94:894–903

    Article  CAS  PubMed  Google Scholar 

  57. Cust AE, Harland M, Makalic E et al (2011) Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK. J Med Genet 48:266–272

    Article  CAS  PubMed  Google Scholar 

  58. Begg CB, Orlow I, Hummer AJ et al (2005) Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J Natl Cancer Inst 97:1507–1515

    Article  CAS  PubMed  Google Scholar 

  59. Walker GJ, Hussussian CJ, Flores JF et al (1995) Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum Mol Genet 4:1845–1852

    Article  CAS  PubMed  Google Scholar 

  60. Liu L, Lassam NJ, Slingerland JM et al (1995) Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene 11:405–412

    CAS  PubMed  Google Scholar 

  61. Reymond A, Brent R (1995) p16 proteins from melanoma-prone families are deficient in binding to Cdk4. Oncogene 11:1173–1178

    CAS  PubMed  Google Scholar 

  62. Ranade K, Hussussian CJ, Sikorski RS et al (1995) Mutations associated with familial melanoma impair p16INK4 function. Nat Genet 10:114–116

    Article  CAS  PubMed  Google Scholar 

  63. Chaudru V, Lo MT, Lesueur F, Marian C et al (2009) Protective effect of copy number polymorphism of glutathione S-transferase T1 gene on melanoma risk in presence of CDKN2A mutations, MC1R variants and host-related phenotypes. Fam Cancer. 8(4):371–377. doi:10.1007/s10689-009-9249-5. Epub 2009 May 31. PMID: 19484507

  64. Berwick M, Orlow I, Hummer AJ et al (2006) The prevalence of CDKN2A germ-line mutations and relative risk for cutaneous malignant melanoma: an international population-based study. Cancer Epidemiol Biomarkers Prev 15:1520–1525

    Article  CAS  PubMed  Google Scholar 

  65. Goldstein AM, Stacey SN, Olafsson JH et al (2008) CDKN2A mutations and melanoma risk in the Icelandic population. J Med Genet 45:284–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37

    Article  CAS  PubMed  Google Scholar 

  67. Chin L, Pomerantz J, Polsky D et al (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11:2822–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharpless NE, Bardeesy N, Lee KH et al (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413:86–91

    Article  CAS  PubMed  Google Scholar 

  69. Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001) Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413:83–86

    Article  CAS  PubMed  Google Scholar 

  70. Walker GJ, Hayward NK (2002) p16INK4A and p14ARF tumour suppressors in melanoma: lessons from the mouse. Lancet 359:7–8

    Article  PubMed  Google Scholar 

  71. Monahan KB, Rozenberg GI, Krishnamurthy J et al (2010) Somatic p16INK4a loss accelerates melanomagenesis. Oncogene 29:5809–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clark WH Jr, Elder DE (1984) Guerry Dt, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 15:1147–1165

    Article  PubMed  Google Scholar 

  73. Cowan JM, Halaban R, Francke U (1988) Cytogenetic analysis of melanocytes from premalignant nevi and melanomas. J Natl Cancer Inst 80:1159–1164

    Article  CAS  PubMed  Google Scholar 

  74. Parmiter AH, Nowell PC (1988) The cytogenetics of human malignant melanoma and premalignant lesions. Cancer Treat Res 43:47–61

    Article  CAS  PubMed  Google Scholar 

  75. Lee JY, Dong SM, Shin MS et al (1997) Genetic alterations of p16INK4a and p53 genes in sporadic dysplastic nevus. Biochem Biophys Res Commun 237:667–672

    Article  CAS  PubMed  Google Scholar 

  76. Boni R, Zhuang Z, Albuquerque A, Vortmeyer A, Duray P (1998) Loss of heterozygosity detected on 1p and 9q in microdissected atypical nevi. Arch Dermatol 134:882–883

    Article  CAS  PubMed  Google Scholar 

  77. Park WS, Vortmeyer AO, Pack S et al (1998) Allelic deletion at chromosome 9p21(p16) and 17p13(p53) in microdissected sporadic dysplastic nevus. Hum Pathol 29:127–130

    Article  CAS  PubMed  Google Scholar 

  78. Wang Y, Becker D (1996) Differential expression of the cyclin-dependent kinase inhibitors p16 and p21 in the human melanocytic system. Oncogene 12:1069–1075

    CAS  PubMed  Google Scholar 

  79. Matsumura Y, Nishigori C, Miyachi Y (2001) Analysis of the p16 gene status of non-familial dysplastic nevus syndrome patients. Arch Dermatol Res 293:540–542

    Article  CAS  PubMed  Google Scholar 

  80. Puig S, Ruiz A, Castel T et al (1997) Inherited susceptibility to several cancers but absence of linkage between dysplastic nevus syndrome and CDKN2A in a melanoma family with a mutation in the CDKN2A (P16INK4A) gene. Hum Genet 101:359–364

    Article  CAS  PubMed  Google Scholar 

  81. Birindelli S, Tragni G, Bartoli C et al (2000) Detection of microsatellite alterations in the spectrum of melanocytic nevi in patients with or without individual or family history of melanoma. Int J Cancer 86:255–261

    Article  CAS  PubMed  Google Scholar 

  82. Healy E, Sikkink S, Rees JL (1996) Infrequent mutation of p16INK4 in sporadic melanoma. J Invest Dermatol 107:318–321

    Article  CAS  PubMed  Google Scholar 

  83. Wang H, Presland RB, Piepkorn M (2005) A search for CDKN2A/p16INK4a mutations in melanocytic nevi from patients with melanoma and spouse controls by use of laser-captured microdissection. Arch Dermatol 141:177–180

    CAS  PubMed  Google Scholar 

  84. Welch J, Millar D, Goldman A et al (2001) Lack of genetic and epigenetic changes in CDKN2A in melanocytic nevi. J Invest Dermatol 117:383–384

    Article  CAS  PubMed  Google Scholar 

  85. Gruis NA, Sandkuijl LA, van der Velden PA, Bergman W, Frants RR (1995) CDKN2 explains part of the clinical phenotype in Dutch familial atypical multiple-mole melanoma (FAMMM) syndrome families. Melanoma Res 5:169–177

    Article  CAS  PubMed  Google Scholar 

  86. Hashemi J, Linder S, Platz A, Hansson J (1999) Melanoma development in relation to non-functional p16/INK4A protein and dysplastic naevus syndrome in Swedish melanoma kindreds. Melanoma Res 9:21–30

    Article  CAS  PubMed  Google Scholar 

  87. Harland M, Meloni R, Gruis N et al (1997) Germline mutations of the CDKN2 gene in UK melanoma families. Hum Mol Genet 6:2061–2067

    Article  CAS  PubMed  Google Scholar 

  88. Wachsmuth RC, Harland M, Bishop JA (1998) The atypical-mole syndrome and predisposition to melanoma. N Engl J Med 339:348–349

    Article  CAS  PubMed  Google Scholar 

  89. Mihic-Probst D, Mnich CD, Oberholzer PA et al (2006) p16 expression in primary malignant melanoma is associated with prognosis and lymph node status. Int J Cancer 118:2262–2268

    Article  CAS  PubMed  Google Scholar 

  90. Sanki A, Li W, Colman M et al (2007) Reduced expression of p16 and p27 is correlated with tumour progression in cutaneous melanoma. Pathology 39:551–557

    Article  CAS  PubMed  Google Scholar 

  91. Karim RZ, Li W, Sanki A et al (2009) Reduced p16 and increased cyclin D1 and pRb expression are correlated with progression in cutaneous melanocytic tumors. Int J Surg Pathol 17:361–367

    Article  PubMed  Google Scholar 

  92. Sarkar-Agrawal P, Vergilis I, Sharpless NE, DePinho RA, Runger TM (2004) Impaired processing of DNA photoproducts and ultraviolet hypermutability with loss of p16INK4a or p19ARF. J Natl Cancer Inst 23:1790–1793

    Article  CAS  Google Scholar 

  93. Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424–429

    Article  CAS  PubMed  Google Scholar 

  94. Schulze A, Zerfass K, Spitkovsky D, Henglein B, Jansen-Durr P (1994) Activation of the E2F transcription factor by cyclin D1 is blocked by p16INK4, the product of the putative tumor suppressor gene MTS1. Oncogene 9:3475–3482

    CAS  PubMed  Google Scholar 

  95. Johnson DG (1995) Regulation of E2F-1 gene expression by p130 (Rb2) and D-type cyclin kinase activity. Oncogene 11:1685–1692

    CAS  PubMed  Google Scholar 

  96. Soucek T, Pusch O, Hengstschlager-Ottnad E, Wawra E, Bernaschek G, Hengstschlager M (1995) Expression of the cyclin-dependent kinase inhibitor p16 during the ongoing cell cycle. FEBS Lett 373:164–169

    Article  CAS  PubMed  Google Scholar 

  97. Hall M, Bates S, Peters G (1995) Evidence for different modes of action of cyclin-dependent kinase inhibitors: p15 and p16 bind to kinases, p21 and p27 bind to cyclins. Oncogene 11:1581–1588

    CAS  PubMed  Google Scholar 

  98. Ragione FD, Russo GL, Oliva A et al (1996) Biochemical characterization of p16INK4- and p18-containing complexes in human cell lines. J Biol Chem 271:15942–15949

    Article  CAS  PubMed  Google Scholar 

  99. Coleman KG, Wautlet BS, Morrissey D et al (1997) Identification of CDK4 sequences involved in cyclin D1 and p16 binding. J Biol Chem 272:18869–18874

    Article  CAS  PubMed  Google Scholar 

  100. Tam SW, Shay JW, Pagano M (1994) Differential expression and cell cycle regulation of the cyclin-dependent kinase 4 inhibitor p16Ink4. Cancer Res 54:5816–5820

    CAS  PubMed  Google Scholar 

  101. Li Y, Nichols MA, Shay JW, Xiong Y (1994) Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 54:6078–6082

    CAS  PubMed  Google Scholar 

  102. Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16:859–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang B, Peng Z (1996) Defective folding of mutant p16(INK4) proteins encoded by tumor-derived alleles. J Biol Chem 271:28734–28737

    Article  CAS  PubMed  Google Scholar 

  104. Wick ST, Dubay MM, Imanil I, Brizuela L (1995) Biochemical and mutagenic analysis of the melanoma tumor suppressor gene product/p16. Oncogene 11:2013–2019

    PubMed  Google Scholar 

  105. Piepkorn M (2000) The expression of p16(INK4a), the product of a tumor suppressor gene for melanoma, is upregulated in human melanocytes by UVB irradiation. J Am Acad Dermatol 42:741–745

    Article  CAS  PubMed  Google Scholar 

  106. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000

    Article  CAS  PubMed  Google Scholar 

  107. Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15:203–211

    Article  CAS  PubMed  Google Scholar 

  108. David-Pfeuty T, Nouvian-Dooghe Y (2002) Human p14(Arf): an exquisite sensor of morphological changes and of short-lived perturbations in cell cycle and in nucleolar function. Oncogene 21:6779–6790

    Article  CAS  PubMed  Google Scholar 

  109. Palmero I, Pantoja C, Serrano M (1998) p19ARF links the tumour suppressor p53 to Ras. Nature 395:125–126

    Article  CAS  PubMed  Google Scholar 

  110. Pomerantz J, Schreiber-Agus N, Liegeois NJ et al (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92:713–723

    Article  CAS  PubMed  Google Scholar 

  111. Dobrowolski R, Hein R, Buettner R, Bosserhoff AK (2002) Loss of p14ARF expression in melanoma. Arch Dermatol Res 293:545–551

    Article  CAS  PubMed  Google Scholar 

  112. Randerson-Moor JA, Harland M, Williams S et al (2001) A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 10:55–62

    Article  CAS  PubMed  Google Scholar 

  113. Rizos H, Darmanian AP, Holland EA, Mann GJ, Kefford RF (2001) Mutations in the INK4a/ARF melanoma susceptibility locus functionally impair p14ARF. J Biol Chem 276:41424–41434

    Article  CAS  PubMed  Google Scholar 

  114. Hewitt C, Lee Wu C, Evans G et al (2002) Germline mutation of ARF in a melanoma kindred. Hum Mol Genet 11:1273–1279

    Article  CAS  PubMed  Google Scholar 

  115. Binni F, Antigoni I, De Simone P et al (2010) Novel and recurrent p14ARF mutations in Italian familial melanoma. Clin Genet 77:581–586

    Article  CAS  PubMed  Google Scholar 

  116. Ressler S, Bartkova J, Niederegger H et al (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5:379–389

    Article  CAS  PubMed  Google Scholar 

  117. Haferkamp S, Scurr LL, Becker TM et al (2009) Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. J Invest Dermatol 129:1983–1991

    Article  CAS  PubMed  Google Scholar 

  118. Klein MA, Mayo KH, Kratzke RA (2010) P16INK4a peptide mimetics identified via virtual screening. Bioorg Med Chem Lett 20:403–405

    Article  CAS  PubMed  Google Scholar 

  119. Wolfel T, Hauer M, Schneider J et al (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284

    Article  CAS  PubMed  Google Scholar 

  120. Sotillo R, Garcia JF, Ortega S et al (2001) Invasive melanoma in Cdk4-targeted mice. Proc Natl Acad Sci USA 98:13312–13317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goldstein AM, Chidambaram A, Halpern A et al (2002) Rarity of CDK4 germline mutations in familial melanoma. Melanoma Res 12:51–55

    Article  CAS  PubMed  Google Scholar 

  122. Molven A, Grimstvedt MB, Steine SJ et al (2005) A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chromosomes Cancer 44:10–18

    Article  CAS  PubMed  Google Scholar 

  123. Box NF, Duffy DL, Chen W et al (2001) MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet 69:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pavey S, Gabrielli B (2002) Alpha-melanocyte stimulating hormone potentiates p16/CDKN2A expression in human skin after ultraviolet irradiation. Cancer Res 62:875–880

    CAS  PubMed  Google Scholar 

  125. Wikberg JE, Muceniece R, Mandrika I et al (2000) New aspects on the melanocortins and their receptors. Pharmacol Res 42:393–420

    Article  CAS  PubMed  Google Scholar 

  126. Aoki H, Moro O (2002) Involvement of microphthalmia-associated transcription factor (MITF) in expression of human melanocortin-1 receptor (MC1R). Life Sci 71:2171–2179

    Article  CAS  PubMed  Google Scholar 

  127. Schaffer JV, Bolognia JL (2001) The melanocortin-1 receptor: red hair and beyond. Arch Dermatol 137:1477–1485

    Article  CAS  PubMed  Google Scholar 

  128. Pavey S, Conroy S, Russell T, Gabrielli B (1999) Ultraviolet radiation induces p16CDKN2A expression in human skin. Cancer Res 59:4185–4189

    CAS  PubMed  Google Scholar 

  129. Jimenez-Cervantes C, Olivares C, Gonzalez P, Morandini R, Ghanem G, Garcia-Borron JC (2001) The Pro162 variant is a loss-of-function mutation of the human melanocortin 1 receptor gene. J Invest Dermatol 117:156–158

    Article  CAS  PubMed  Google Scholar 

  130. Scott MC, Wakamatsu K, Ito S et al (2002) Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J Cell Sci 115:2349–2355

    CAS  PubMed  Google Scholar 

  131. Bastiaens M, ter Huurne J, Gruis N et al (2001) The melanocortin-1-receptor gene is the major freckle gene. Hum Mol Genet 10:1701–1708

    Article  CAS  PubMed  Google Scholar 

  132. Flanagan N, Healy E, Ray A et al (2000) Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum Mol Genet 9:2531–2537

    Article  CAS  PubMed  Google Scholar 

  133. Flanagan N, Ray AJ, Todd C, Birch-Machin MA, Rees JL (2001) The relation between melanocortin 1 receptor genotype and experimentally assessed ultraviolet radiation sensitivity. J Invest Dermatol 117:1314–1317

    Article  CAS  PubMed  Google Scholar 

  134. Palmer JS, Duffy DL, Box NF et al (2000) Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am J Hum Genet 66:176–186

    Article  CAS  PubMed  Google Scholar 

  135. Valverde P, Healy E, Sikkink S et al (1996) The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum Mol Genet 5:1663–1666

    Article  CAS  PubMed  Google Scholar 

  136. Kennedy C, ter Huurne J, Berkhout M et al (2001) Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol 117:294–300

    Article  CAS  PubMed  Google Scholar 

  137. Gruis NA, van der Velden PA, Sandkuijl LA, Bergman W, Frants RR (1997) Variants of the melanocyte-stimulating hormone receptor gene modify melanoma risk in familial atypical multiple mole-melanoma (FAMMM) syndrome families. Melanoma Res 7(Suppl 1):S9

    Article  Google Scholar 

  138. van der Velden PA, Sandkuijl LA, Bergman W et al (2001) Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am J Hum Genet 69:774–779

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bates S, Phillips AC, Clark PA et al (1998) p14ARF links the tumour suppressors RB and p53. Nature 395:124–125

    Article  CAS  PubMed  Google Scholar 

  140. Demenais F, Mohamdi H, Chaudru V et al (2010) Association of MC1R variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study. J Natl Cancer Inst 102:1568–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ha T, Rees JL (2001) Melanocortin 1 receptor: what’s red got to do with it? J Am Acad Dermatol 45:961–964

    Article  CAS  PubMed  Google Scholar 

  142. Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    Article  CAS  PubMed  Google Scholar 

  143. Boone B, Van Gele M, Lambert J, Haspeslagh M, Brochez I (2009) The role of RhoC in growth and metastatic capacity of melanoma. J Cutan Pathol 36:629–636

    Article  PubMed  Google Scholar 

  144. Ruth MC, Xu Y, Maxwell IH et al (2006) RhoC promotes human melanoma invasion in a PI3K/Akt-dependent pathway. J Invest Dermatol 126:862–868

    Article  CAS  PubMed  Google Scholar 

  145. Yoshida BA, Sokoloff MM, Welch DR, Rinker-Schaeffer CW (2000) Metastasis-suppressor genes: a review and perspective on an emerging field. J Natl Cancer Inst 92:1717–1730

    Article  CAS  PubMed  Google Scholar 

  146. Duncan LM, Deeds J, Hunter J et al (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515–1520

    CAS  PubMed  Google Scholar 

  147. Deeds J, Cronin F, Duncan LM (2000) Patterns of melastatin mRNA expression in melanocytic tumors. Hum Pathol 31:1346–1356

    Article  CAS  PubMed  Google Scholar 

  148. Duncan LM, Deeds J, Cronin FE et al (2001) Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol 19:568–576

    Article  CAS  PubMed  Google Scholar 

  149. Hammock L, Cohen C, Carlson G et al (2006) Chromogenic in situ hybridization analysis of melastatin mRNA expression in melanomas from American Joint Committee on Cancer stage I and I patients with recurrent melanoma. J Cutan Pathol 33:599–607

    Article  CAS  PubMed  Google Scholar 

  150. Fang D, Setaluri V (2000) Expression and Up-regulation of alternatively spliced transcripts of melastatin, a melanoma metastasis-related gene, in human melanoma cells. Biochem Biophys Res Commun 279:53–61

    Article  CAS  PubMed  Google Scholar 

  151. Wehrli P, Viard I, Bullani R, Tschopp J, French LE (2000) Death receptors in cutaneous biology and disease. J Invest Dermatol 115:141–148

    Article  CAS  PubMed  Google Scholar 

  152. Shukuwa T, Katayama I, Koji T (2002) Fas-mediated apoptosis of melanoma cells and infiltrating lymphocytes in human malignant melanomas. Mod Pathol 15:387–396

    Article  PubMed  Google Scholar 

  153. Bullani RR, Wehrli P, Viard-Leveugle I et al (2002) Frequent downregulation of Fas (CD95) expression and function in melanoma. Melanoma Res 12:263–270

    Article  CAS  PubMed  Google Scholar 

  154. Redondo P, Solano T, Vazquez B, Bauza A, Idoate M (2002) Fas and Fas ligand: expression and soluble circulating levels in cutaneous malignant melanoma. Br J Dermatol 147:80–86

    Article  CAS  PubMed  Google Scholar 

  155. Zhang H, Sun XF, Synnerstad I, Rosdahl I (2007) Importance of FAS-1377, FAS-670, and FASL-844 polymorphisms in tumor onset, progression, and pigment phenotypes of Swedish patients with melanoma: a case-control analysis. Cancer J 13:233–237

    Article  PubMed  Google Scholar 

  156. Zhang Z, Xue H, Gong W et al (2009) FAS promoter polymorphisms and cancer risk: a meta-analysis based on 34 case-control studies. Carcinogenesis 30:487–493

    Article  CAS  PubMed  Google Scholar 

  157. Urquhart JL, Meech SJ, Marr DG, Shellman YG, Duke RC, Norris DA (2002) Regulation of Fas-mediated apoptosis by N-ras in melanoma. J Invest Dermatol 119:556–561

    Article  CAS  PubMed  Google Scholar 

  158. Raisova M, Hossini AM, Eberle J et al (2001) The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 117:333–340

    Article  CAS  PubMed  Google Scholar 

  159. McGill GG, Horstmann M, Widlund HR et al (2002) Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109:707–718

    Article  CAS  PubMed  Google Scholar 

  160. Hilmi C, Larribere L, Giullano S et al (2008) IGF1 promotes resistance to apoptosis in melanoma cells through an increased expression of BCL2, BCL-X(L), and survivin. J Invest Dermatol 128:1499–1505

    Article  CAS  PubMed  Google Scholar 

  161. Di Cresce C, Koropatnick J (2010) Antisense treatment in human prostate cancer and melanoma. Curr Cancer Drug Targets 10:555–565

    Article  PubMed  Google Scholar 

  162. Fecker LF, Schmude M, Jost S et al (2010) Efficient and selective tumor cell lysis and induction of apoptosis in melanoma cells by a conditional replication-competent CD95L adenovirus. Exp Dermatol 19:e56–e66

    Article  PubMed  Google Scholar 

  163. Davis ST, Benson BG, Bramson HN et al (2001) Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors. Science 291:134–137

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Piepkorn MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piepkorn, M.W. (2014). Genetic and Molecular Pathology of Melanoma. In: Barnhill, R., Piepkorn, M., Busam, K. (eds) Pathology of Melanocytic Nevi and Melanoma. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38385-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38385-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38384-7

  • Online ISBN: 978-3-642-38385-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics