Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMUFLO))

  • 1103 Accesses

Abstract

In general, the traditional nonlinear time series analysis methods (chaotic attractor morphology, complexity measures and chaotic recurrence plot) cannot effectively reveal the complex fluid structure of two-phase flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.K. Gao, N.D. Jin, Complex network from time series based on phase space reconstruction. Chaos 19, 033137 (2009)

    Article  Google Scholar 

  2. Z.K. Gao, N.D. Jin, W.X. Wang, Y.C. Lai, Motif distributions in phase-space networks for characterizing experimental two-phase flow patterns with chaotic features. Phys. Rev. E 82(2), 016210 (2010)

    Article  Google Scholar 

  3. N.H. Packard, J.P. Crutehfield, J.D. Farmer, Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980)

    Article  Google Scholar 

  4. T. Sauer, J.A. Yorke, M. Casdagli, Embedology. J. Stat. Phys. 65, 579–616 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  6. H.S. Kim, R. Eykholt, J.D. Salas, Nonlinear dynamics, delay times, and embedding windows. Physica D 127, 48–60 (1999)

    Article  MATH  Google Scholar 

  7. F. Takens, Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol 898 (Springer, New York, 1981), pp. 366–381

    Google Scholar 

  8. R.V. Donner, J. Heitzig, J.F. Donges, Y. Zou, N. Marwan, J. Kurths, The geometry of chaotic dynamics—a complex network perspective. Eur. Phys. J. B 84, 653–672 (2011)

    Article  MathSciNet  Google Scholar 

  9. T. Kamada, S. Kawai, An algorithm for drawing general undirected graphs. Inform. Process. Lett. 31(1), 7–15 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Auerbach, P. Cvitanovic, J.P. Eckmann, G. Gunaratne, I. Procaccia, Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58(23), 2387–2389 (1987)

    Article  MathSciNet  Google Scholar 

  11. B. Hunt, E. Ott, Optimal periodic orbits of chaotic systems. Phys. Rev. Lett. 76(13), 2254–2257 (2004)

    Article  Google Scholar 

  12. Y.C. Lai, Y. Nagai, C. Grebogi, Characterization of the natural measure by unstable periodic orbits in chaotic attractors. Phys. Rev. Lett. 79, 649–652 (1997)

    Article  Google Scholar 

  13. M. Dhamala, Y.C. Lai, Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles. Phys. Rev. E 60, 6176–6179 (1999)

    Article  Google Scholar 

  14. R.L. Davidchack, Y.C. Lai, A. Klebanoff, E.M. Bollt, Toward complete detection of unstable periodic orbits in chaotic systems. Phys. Lett. A 287, 99–104 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Dhamala, Y.C. Lai, The natural measure of nonattracting chaotic sets and its representation by unstable periodic orbits. Int. J. Bifurcat. Chaos 12, 2991–3006 (2002)

    Article  Google Scholar 

  16. A. Akaishi, A. Shudo, Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map. Phys. Rev. E 80(6), 026211 (2009)

    Article  Google Scholar 

  17. S.H. Wu, J.H. Hao, H.B. Xu, Controlling chaos to unstable periodic orbits and equilibrium state solutions for the coupled dynamos system. Chin. Phys. B 19(2), 020509 (2010)

    Article  Google Scholar 

  18. R. Pastor-Satorras, A. Vazquez, A. Vespignani, Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87(25), 258701 (2001)

    Article  Google Scholar 

  19. M.E.J. Newman, Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  20. M.E.J. Newman, Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)

    Article  MathSciNet  Google Scholar 

  21. C.L. Freeman, A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  22. C.L. Freeman, Centrality in social networks: conceptual clarification. Social networks 1, 215–239 (1979)

    Article  Google Scholar 

  23. S. Wasserman, K. Faust, Social Networks Analysis (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ke Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Gao, ZK., Jin, ND., Wang, WX. (2014). Gas-Water Fluid Structure Complex Network. In: Nonlinear Analysis of Gas-Water/Oil-Water Two-Phase Flow in Complex Networks. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38373-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38373-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38372-4

  • Online ISBN: 978-3-642-38373-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics