Skip to main content

Mechanical Behavior of Ceramic Materials

  • Chapter
  • First Online:
  • 2629 Accesses

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

Ceramic materials are typically brittle materials, presenting very different mechanical behavior when compared to metallic and polymeric materials. Usually, the most important mechanical properties of ceramic materials concerning their mechanical behavior are tensile strength and fracture resistance, based on concepts of Fracture Mechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • American Society for Testing Materials C 1576-05 Standard test method for determination of slow crack growth parameters of advanced ceramics by constant stress flexural testing (Stress Rupture) at ambient temperature. Annual book of ASTM standards. Refractories; carbon and graphite and products, activated carbon, Advanced Ceramics. Available at www.astm.com. Accessed in Nov 2007, p. 1–12 (2007)

  • Cho, S.J., Yoon, K.J., Kim, J.J., Kim, K.H.: Influence of humidity on the flexural strength of alumina. J. Eur. Ceram. Soc. 20(6), 761–764 (2000)

    Article  Google Scholar 

  • Cho, S.J., Yoon, K.J., Lee, C.Y., Chu, M.C.: Effects of environmental temperature and humidity on the flexural strength of alumina and measurement of environment-insensitive inherent strength. Mater. Lett. 57(18), 2751–2754 (2003)

    Article  Google Scholar 

  • Fischer, H., Marx, R.: Fracture toughness of dental ceramics: comparison of bending and indentation method. Dental Mater. 18, 12–19 (2002)

    Article  Google Scholar 

  • Gogotsi, G.A.: Fracture toughness of ceramics and ceramic composites. Ceram. Intl. 29(7), 777–784 (2003)

    Article  Google Scholar 

  • Griffith, A.A.: The Phenomena of Rupture and Flow in Solids. Phil. Trans. Royal Soc. A221, 163–198 (1921)

    Article  Google Scholar 

  • Kelly, J.R.: Perspectives on strength. Dent. Mater. 11(2), 103–110 (1995)

    Article  Google Scholar 

  • Morena, R., Beaudreau, G.M., Lockwood, P.E., Evans, A.L., Fairhurst, C.W.: Fatigue of dental ceramics in a simulated oral environment. J. Dent. Res. 65(7), 993–997 (1986)

    Article  Google Scholar 

  • Mukhopadhyay, A.K., Datta, S.K., Chakraborty, D.: Fracture toughness of structural ceramics. Ceram Intl. 25(5), 447–454 (1999)

    Article  Google Scholar 

  • Niihara, K., Morena, R., Hasselman, D.P.H.: Evaluation of KIC of brittle solids by the indentation method with low crack to indent ratios. J. Mater. Sci. Lett. 1, 13–16 (1982)

    Article  Google Scholar 

  • Park, S., Quinn, J.B., Romberg, E., Arola, D.: On the brittleness of enamel and selected dental materials. Dental Mater. 24(11), 1477–1485 (2008)

    Article  Google Scholar 

  • Quinn, J.B., Sunda, V., Lloyd, I.K.: Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dental Mater. 19(7), 603–611 (2003)

    Article  Google Scholar 

  • Segui, R.R., Denry, I.L., Rosenstiel, S.F.: Relative fracture toughness and hardness of new dental ceramics. J. Prosthet. Dent. 74(2), 145–150 (1995)

    Article  Google Scholar 

  • Sglavo, V.M., Pancheri, P.: Crack decorating technique for fracture-toughness measurement in alumina. J. Eur. Ceram. Soc. 17(14), 1697–1706 (1997)

    Article  Google Scholar 

  • Sherrill, C.A., O’Brien, W.J.: Transverse strength of aluminous and feldspathic porcelain. J. Dent. Res. 53(3), 683–690 (1974)

    Article  Google Scholar 

  • Thompson, G.A.: Determining the slow crack growth parameter and Weibull two-parameter estimates of bilaminate disks by constant displacement-rate flexural testing. Dental Mater. 20(1), 51–62 (2004)

    Article  Google Scholar 

  • Tsuji, K., Iwase, K., Ando, K.: An investigation into the location of crack initiation sites in alumina, polycarbonate and mild steel. Fatigue Fract. Engng. Mater. Struct. 22, 509–517 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos P. Bergmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergmann, C.P., Stumpf, A. (2013). Mechanical Behavior of Ceramic Materials. In: Dental Ceramics. Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38224-6_6

Download citation

Publish with us

Policies and ethics