Skip to main content

The Maximum Weight Connected Subgraph Problem

  • Chapter
Facets of Combinatorial Optimization

Abstract

The Maximum (Node-) Weight Connected Subgraph Problem (MWCS) searches for a connected subgraph with maximum total weight in a node-weighted (di)graph. In this work we introduce a new integer linear programming formulation built on node variables only, which uses new constraints based on node-separators. We theoretically compare its strength to previously used MIP models in the literature and study the connected subgraph polytope associated with our new formulation. In our computational study we compare branch-and-cut implementations of the new model with two models recently proposed in the literature: one of them using the transformation into the Prize-Collecting Steiner Tree problem, and the other one working on the space of node variables only. The obtained results indicate that the new formulation outperforms the previous ones in terms of the running time and in terms of the stability with respect to variations of node weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Backes, C., Rurainski, A., Klau, G., Müller, O., Stöckel, D., Gerasch, A., Küntzer, J., Maisel, D., Ludwig, N., Hein, M., Keller, A., Burtscher, H., Kaufmann, M., Meese, E., Lenhof, H.: An integer linear programming approach for finding deregulated subgraphs in regulatory networks. Nucleic Acids Res. 1, 1–13 (2011)

    Google Scholar 

  2. Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M., Korula, N., Marx, D.: Prize-collecting Steiner problems on planar graphs. In: Randall, D. (ed.) Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, CA, USA, January 23–25, pp. 1028–1049 (2011)

    Google Scholar 

  3. Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J., Weintraub, A.: Imposing connectivity constraints in forest planning models. Oper. Res. (2013). doi:10.1287/opre.2013.1183

    MATH  Google Scholar 

  4. Chen, C.Y., Grauman, K.: Efficient activity detection with max-subgraph search. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, June 16–21, pp. 1274–1281 (2012)

    Chapter  Google Scholar 

  5. Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the maximum flow problem. Algorithmica 19, 390–410 (1994)

    Article  MathSciNet  Google Scholar 

  6. Chimani, M., Kandyba, M., Ljubic, I., Mutzel, P.: Obtaining optimal k-cardinality trees fast. ACM J. Exp. Algorithmics 14, 5 (2009)

    MathSciNet  Google Scholar 

  7. Dilkina, B., Gomes, C.: Solving connected subgraph problems in wildlife conservation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR. LNCS, vol. 6140, pp. 102–116. Springer, Berlin (2010)

    Google Scholar 

  8. Dittrich, M., Klau, G., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24, i223–i231 (2008)

    Article  Google Scholar 

  9. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast transmissions. J. Comput. Syst. Sci. 63(1), 21–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischetti, M., Hamacher, H.W., Jørnsten, K., Maffioli, F.: Weighted k-cardinality trees: complexity and polyhedral structure. Networks 24(1), 11–21 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fügenschuh, A., Fügenschuh, M.: Integer linear programming models for topology optimization in sheet metal design. Math. Methods Oper. Res. 68(2), 313–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. genetrail.bioinf.uni-sb.de/ilp/. Accessed 10 September 2012

  13. Goldschmidt, O., Hochbaum, D.S.: k-edge subgraph problems. Discrete Appl. Math. 74(2), 159–169 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grötschel, M.: Polyedrische Charakterisierungen Kombinatorischer Optimierungsprobleme. Mathematical Systems in Economics, vol. 36. Verlag Anton Hain, Meisenheim am Glan (1977)

    MATH  Google Scholar 

  15. Grötschel, M., Monma, C.L.: Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM J. Discrete Math. 3(4), 502–523 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grötschel, M., Monma, C.L., Stoer, M.: Facets for polyhedra arising in the design of communication networks with low-connectivity constraints. SIAM J. Optim. 2(3), 474–504 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral and computational investigations for designing communication networks with high survivability requirements. Oper. Res. 43(6), 1012–1024 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hochbaum, D.S., Pathria, A.: Node-optimal connected k-subgraphs. Manuscript, UC Berkeley (1994)

    Google Scholar 

  19. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl. 1), s233–s240 (2002)

    Article  Google Scholar 

  20. Johnson, D.S., Minkoff, M., Phillips, S.: The prize-collecting Steiner tree problem: theory and practice. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, San Francisco, CA, USA, 9–11 January, pp. 760–769 (2000)

    Google Scholar 

  21. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32, 207–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, H., Dooly, D.R.: Algorithms for the constrained maximum-weight connected graph problem. Nav. Res. Logist. 43, 985–1008 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, H., Dooly, D.: Decomposition algorithms for the maximum-weight connected graph problem. Nav. Res. Logist. 45, 817–837 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. Math. Program., Ser. B 105, 427–449 (2006)

    Article  MATH  Google Scholar 

  25. www.planet-lisa.net/. Accessed 10 September 2012

  26. Yamamoto, T., Bannai, H., Nagasaki, M., Miyano, S.: Better decomposition heuristics for the maximum-weight connected graph problem using betweenness centrality. In: Gama, J., Costa, V., Jorge, A., Brazdil, P. (eds.) Discovery Science. LNCS, vol. 5808, pp. 465–472. Springer, Berlin (2009)

    Chapter  Google Scholar 

Download references

Acknowledgements

We are deeply thankful to Christina Backes from the Department of Human Genetics, Saarland University, who helped in the understanding and interpretation of the regulatory network instances considered in this paper. This research is partially conducted during the research stay of Ivana Ljubić at the TU Dortmund, supported by the APART Fellowship of the Austrian Academy of Sciences. This support is greatly acknowledged. Eduardo Álvarez-Miranda thanks the Institute of Advanced Studies of the Università di Bologna from where he is a Ph.D. Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Ljubić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Álvarez-Miranda, E., Ljubić, I., Mutzel, P. (2013). The Maximum Weight Connected Subgraph Problem. In: Jünger, M., Reinelt, G. (eds) Facets of Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38189-8_11

Download citation

Publish with us

Policies and ethics