Skip to main content

Bacterial Community in the Inoculum

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Water Science and Technology ((BRIEFSWATER))

Abstract

Although our previous studies indicated the two heterotrophic-autotrophic denitrification permeable reactive barriers (HAD PRBs) contained heterotrophic and autotrophic denitrifying bacteria and aerobic heterotrophs, convincing molecular and biochemical evidence for their existence is lacking and the bacterial communities remain largely unknown. Using polymerase chain reaction (PCR) and 16S rRNA, the bacterial community composition in the inoculum introduced into the two HAD PRBs were assessed in this study. The extracted deoxyribonucleic acid (DNA) fragment of about 23 kb in length indicated integral genomic DNA was successfully achieved. The A 260/A 280 ratio of approximately 1.72 suggested the genomic DNA could be directly used for subsequent PCR amplification. The 27F/1492R primer pair was successfully able to obtain an approximately 1500-bp specific band. The inoculum contained aerobic heterotrophic bacteria (belonging to Adhaeribacter and Flavisolibacter), heterotrophic denitrifiers (belonging to Bacillus, Clostridium, Flavobacterium, Steroidobacter and Novosphingobium), hydrogenotrophic denitrifiers (belonging to Pseudomonas) and the other anaerobic bacteria (belonging to Anaerovorax, Azoarcus, Geobacter and Desulfobulbu). The diversity of bacteria from the inoculum was high, with at least 13 bacterial genera present.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BD:

Biological denitrification

DNA:

Deoxyribonucleic acid

dNTP:

deoxynucleoside triphosphate

HAD:

Heterotrophic-autotrophic denitrification

IPTG:

Isopropyl-D-thiogalactopyranoside

LB:

Luria–Bertani

MEGA:

Molecular evolutionary genetics analysis

NCBI:

National Center for Biotechnology Information

PCR:

polymerase chain reaction

PRB:

Permeable reactive barrier

RDP:

Ribosomal Database Project

X-Gal:

5-bromo-4-chloro-3-indolyl-D-galactopyranoside

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  • Ayyasamy PM, Shanthi K, Lakshmanaperumalsamy P, Lee S-J, Choi N-C, Kim D-J (2007) Two-stage removal of nitrate from groundwater using biological and chemical treatments. J Biosci Bioeng 104(2):129–134

    Article  CAS  Google Scholar 

  • Betlach MR, Tiedje JM (1981) Kinetic explanation for accumulation of nitrite, nitric-oxide, and nitrous-oxide during bacterial denitrification. Appl Environ Microbiol 42(6):1074–1084

    CAS  Google Scholar 

  • Braker G, Ayala-del-Río HL, Devol AH, Fesefeldt A, Tiedje JM (2001) Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl Environ Microbiol 67(4):1893–1901

    Article  CAS  Google Scholar 

  • Braker G, Zhou JZ, Wu LY, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl Environ Microbiol 66:2096–2104

    Article  CAS  Google Scholar 

  • Cao Y, Green PG, Holden PA (2008) Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Appl Environ Microbiol 74(24):7585–7595

    Article  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): Introducing myRDP space and quality controlled public data. Nucl Acids Res 35:D169–D172

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37:D141–D145

    Article  CAS  Google Scholar 

  • Dang H, Wang C, Li J, Li T, Tian F, Jin W, Ding Y, Zhang Z (2009) Diversity and distribution of sediment nirS-encoding bacterial assemblages in response to environmental gradients in the eutrophied Jiaozhou Bay. China Microb Ecol 58(1):161–169

    Article  CAS  Google Scholar 

  • Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P, Dott W, Hollender J (2008) Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol 58:2215–2223

    Article  CAS  Google Scholar 

  • Gamble TN, Betlach MR, Tiedje JM (1977) Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol 33:926–939

    CAS  Google Scholar 

  • Hiscock KM, Lloyd JW, Lerner DN (1991) Review of natural and artificial denitrification of groundwater. Water Res 25:1099–1111

    Article  CAS  Google Scholar 

  • Lim Y-W, Lee S-A, Kim SB, Yong H-Y, Yeon S-H, Park Y-K, Jeong D-W, Park J-S (2005) Diversity of denitrifying bacteria isolated from daejeon sewage treatment plant. J Microbiol 43(5):383–390

    CAS  Google Scholar 

  • Matthies C, Evers S, Ludwig W, Schink B (2000) Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. Int J Syst Evol Microbiol 50:1591–1594

    Article  CAS  Google Scholar 

  • Matĕjů V, Čižinská S, Krejěí J, Janoch T (1992) Biological water denitrification: a review. Enzyme Microb Technol 14:170–183

    Article  Google Scholar 

  • Molongoski OJ, Michael JK (1976) Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments. Appl Environ Microbiol 31(1):83–90

    CAS  Google Scholar 

  • Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S, Hemp A, Kalko EKV, Linsenmair KE, Pfeiffer S, Renner S, Schöning I, Weisser WW, Wells K, Fischer M, Overmann J, Friedrich MW (2012) Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol 78(20):7398–7406

    Article  CAS  Google Scholar 

  • Parzer S, Mannhalte C (1991) A rapid method for the isolation of genomic DNA from citrated whole blood. Biochem J 273:229–231

    CAS  Google Scholar 

  • Priemé A, Braker G, Tiedje JM (2002) Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Appl Environ Microbiol 68:1893–1900

    Article  Google Scholar 

  • Rickard AH, Stead AT, O’May GA, Lindsay S, Banner M, Handley PS, Gilbert P (2005) Adhaeribacter aquaticus gen. nov., sp. nov., a gram-negative isolate from a potable water biofilm. Int J Syst Evol Microbiol 55:821–829

    Article  CAS  Google Scholar 

  • Sahu AK, Conneely T, Nüsslein K, Ergas SJ (2009) Hydrogenotrophic denitrification and perchlorate reduction in ion exchange brines using membrane biofilm reactors. Biotechnol Bioeng 104(3):483–491

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  Google Scholar 

  • Shinoda Y, Akagi J, Uchihashi Y, Lindsay S, Banner M, Handley PS, Gilbert P (2005) Anaerobic degradation of aromatic compounds by magnetospirillum strains: isolation and degradation genes. Biosci Biotechnol Biochem 69(8):1483–1491

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25(24):4876–4882

    Article  CAS  Google Scholar 

  • Yoon MH, Im WT (2007) Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 57:1834–1839

    Article  CAS  Google Scholar 

  • Yuan J, Lai Q, Zheng T, Shao Z (2009) Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol 59:2084–2088

    Article  CAS  Google Scholar 

  • Ribosomal Database Project II (1998) Michigan State University, East Lansing. http://rdp.cme.msu.edu. Accessed 3 April 2013

  • Ribosomal Database Project Seqmatch program (1998) Michigan State University, East Lansing. http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp. Accessed 3 April 2013

  • Medical Dictionary (2012) U.S. National Library of Medicine, Maryland. http://www.medicaldictionaryweb.com/Azoarcus-definition. Accessed 3 April 2013

  • Medical Dictionary (2012) U.S. National Library of Medicine, Maryland. http://www.medicaldictionaryweb.com/Geobacter-definition. Accessed 3 April 2013

  • Wikipedia (2001) Wikimedia Foundation, Los Angeles. http://en.wikipedia.org/wiki/Geobacter. Accessed 3 April 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Liu, F., Huang, G., Fallowfield, H., Guan, H., Zhu, L., Hu, H. (2014). Bacterial Community in the Inoculum. In: Study on Heterotrophic-Autotrophic Denitrification Permeable Reactive Barriers (HAD PRBs) for In Situ Groundwater Remediation. SpringerBriefs in Water Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38154-6_4

Download citation

Publish with us

Policies and ethics