Skip to main content

Functional Structure of the Mature Haustorium

  • Chapter
  • First Online:

Abstract

The morphology and functional anatomy of lateral and terminal haustoria are described in this chapter, with emphasis on the patterns of tissue connection with both the host and the parasite, while discussing the possible role of each tissue within the haustorium. The extent of haustorium differentiation correlates with the parasite lifestyle and phenology and with the individual interaction of each haustorium with neighbouring host tissues. While all Orobanchaceae parasites have direct xylem connections with the host, few have direct phloem connections. The pattern of vascular differentiation is regulated by hormonal interactions between parasite and host. The hyaline tissue and the graniferous tracheary elements are structures unique to the haustorium and have special roles not only in nutrient transport, metabolism and storage but also in the regulation of hydrostatic pressures and in protection against pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Confusingly named nucleus in some early publications.

  2. 2.

    Formerly also mentioned as the hyaline body or parenchyma core and incorrectly as the haustorial nucleus.

  3. 3.

    Formerly also named plate xylem and vascular core.

  4. 4.

    Formerly named phloeotracheids.

References

  • Aber M, Fer A, Sallé G (1983) Étude du transfert des substances organiques de l’hôte (Vicia faba) vers le parasite (Orobanche crenata Forsk.). Z Pflanzenphysiol 112:297–308

    CAS  Google Scholar 

  • Alexander T, Weber HC (1985) Zur parasitischen Lebensweise von Parentucellia latifolia (L.) Caruel (Scrophulariaceae). Beitr Biol Pflanz 60:23–34

    Google Scholar 

  • Aloni R, Griffith M (1991) Functional xylem anatomy in root-shoot junctions of six cereal species. Planta 184:123–129

    Article  Google Scholar 

  • Aly R, Hamamouch N, Abu-Nassar J, Wolf S, Joel DM, Eizenberg H, Kaisler E, Cramer C, Gal-On A, Westwood JH (2011) Movement of protein and macromolecule between host plant and the parasitic weed Phelipanche aegyptiaca Pers. Plant Cell Rep 30:2233–2241

    Article  PubMed  CAS  Google Scholar 

  • Attawi FAJ, Weber HC (1980) Zum Parasitismus und zum morphologisch-anatomischen Struktur der Sekundärhaustorien von Orobanche-Arten (Orobanchaceae). Flora 169:55–83

    Google Scholar 

  • Ba AT (1984) Morphology, anatomy and ultrastructure of some parasites species of the genus Striga (Scrophulariaceae). In: Ayensu ES, Doggett H, Keynes RD, Musselman LJ, Parker C, Pickering A (eds) Striga biology and control. JCSU Press, Paris, pp 47–61

    Google Scholar 

  • Ba AT (1988) Structure et ultrastructure de l’haustorium de Striga hermonthica, une scrophulariace!e parasite du mil (Pennisetum typhoides). Can J Bot 66:2111–2117

    Google Scholar 

  • Ba AT, Kahlem G (1979) Mise en évidence d’activités enzymatiques au niveau de I’haustorium d’une phanérogame parasite: Striga hermonthica (Scrophulariaceae). Can J Bot 57:2564–2571

    Article  CAS  Google Scholar 

  • Baird WV, Riopel JL (1986) The developmental anatomy of Conopholis americana (Orobanchaceae) seedlings and tubercles. Can J Bot 64:710–717

    Article  Google Scholar 

  • Bar-Nun N, Sachs T, Mayer AM (2008) A role for IAA in the infection of Arabidopsis thaliana by Orobanche aegyptiaca. Ann Bot 101:261–265

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Fasano JM, Gilroy S (1999) Laser ablation of root cap cells: implications for models of graviperception. Adv Space Res 24:731–738

    Article  PubMed  CAS  Google Scholar 

  • Cameron DD, Seel WE (2007) Functional anatomy of haustoria formed by Rhinanthus minor: linking evidence from histology and isotope tracing. New Phytol 174:412–419

    Article  PubMed  CAS  Google Scholar 

  • Chen Q-L, Jia Y-M, Wang Z-F, Shan C-G, Zhu J-B, Guo Y-H (2011) Postembryonic development of Cistanche tubulosa (Schrenk) Wight. Pak J Bot 43:1823–1830

    Google Scholar 

  • Choat B, Lahr E, Melcher PJ, Zwieniecki MA, Holbrook NM (2005) The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant Cell Environ 28:1082–1089

    Article  Google Scholar 

  • Chuang TI, Heckard LR (1971) Observations on root parasitism in Cordylanthus (Scrophulariaceae). Am J Bot 58:218–228

    Article  Google Scholar 

  • Dobbins DR, Kuijt J (1973a) Studies on the haustorium of Castilleja (Scrophulariaceae). I. The upper haustorium. Can J Bot 51:917–922

    Article  Google Scholar 

  • Dobbins DR, Kuijt J (1973b) Studies on the haustorium of Castilleja (Scrophulariaceae). II. The endophyte. Can J Bot 51:923–931

    Article  Google Scholar 

  • Dörr I (1997) How Striga parasitizes its host: a TEM and SEM study. Ann Bot 79:463–472

    Article  Google Scholar 

  • Dörr I, Kollmann R (1974) Strukturelle Grundlage des Parasitismus bei Orobanche. I. Wachstum der Haustorialzellen im Wirtsgewebe. Protoplasma 80:245–259

    Article  Google Scholar 

  • Dörr I, Kollmann R (1975) Strukturelle Grundlagen des Parasitismus bei Orobanche. II. Die Differenzierung der Assimilat-Leitungsbahn im Haustorialgewebe. Protoplasma 83:185–199

    Article  Google Scholar 

  • Dörr I, Kollmann R (1976) Strukturelle Grundlagen des Parasitismus bei Orobanche. III. Die Differenzierung des Xylemanschlusses bei O. crenata. Protoplasma 89:235–249

    Article  Google Scholar 

  • Dörr I, Kollmann R (1995) Symplasmic sieve element continuity between Orobanche and its host. Bot Acta 108:47–55

    Google Scholar 

  • Dörr I, Visser JH, Albers F (1977) On the parasitism of Alectra vogelii Benth. (Scrophulariaceae). II. Origin of lateral roots in the contact area of the haustorium. Z Pflanzenphysiol 85:349–359

    Google Scholar 

  • Dörr I, Visser JH, Kollmann R (1979) On the parasitism of Alectra vogelii Benth. (Scrophulariaceae). III. The occurrence of phloem between host and parasite. Z Pflanzenphysiol 94:427–439

    Google Scholar 

  • Fer A, De Bock F, Renaudin S, Rey L, Thalouarn P (1987) Relations trophiques entre les angiospermes parasites et leurs hôtes respectifs, II-Voies de transport et mécanismes impliqués dans le transfert des substances trophiques à l’interface hôte-parasite. Bull Soc Bot Fr 134:109–120

    Google Scholar 

  • Fernández-Aparicio M, Rubiales D, Bandaranayake PGC, Yoder JI, Westwood JH (2011) Transformation and regeneration of the holoparasitic plant Phelipanche aegyptiaca. Plant Methods 7:36

    Article  PubMed  Google Scholar 

  • Fineran BA (1963) Studies on the root parasitism of Exocarpus bidwillii Hook. f. III. Primary structure of the haustorium. Phytomorphology 13:42–54

    Google Scholar 

  • Fineran BA (1985) Graniferous tracheary elements in haustoria of root parasitic angiosperms. Bot Rev 51:389–441

    Article  Google Scholar 

  • Gal-On A, Naglis A, Leibman D, Kathiravan K, Lapidot M, Ziadna H, Aly R (2009) Broomrape can acquire viruses from its hosts. Phytopathology 99:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Gurney AL, Grimanelli D, Kanampiu F, Hoisington D, Scholes JD, Press MC (2003) Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol 160:557–568

    Article  Google Scholar 

  • Heide-Jørgensen HS (2008) Parasitic flowering plants. Brill, Leiden

    Book  Google Scholar 

  • Heide-Jørgensen HS, Kuijt J (1993) Epidermal derivatives as xylem elements and transfer cells: a study of the host–parasite interface in two species of Triphysaria (Scrophulariaceae). Protoplasma 174:173–183

    Article  Google Scholar 

  • Heide-Jørgensen HS, Kuijt J (1995) The haustorium of the root parasite Triphysaria (Scrophulariaceae), with special reference to xylem bridge ultrastructure. Am J Bot 82:782–797

    Article  Google Scholar 

  • Heinricher E (1896) Anatomischer Bau und Leistung der Saugorgane der Schuppenwurz Arten (Lathraea clandestina Lam. und L. squamaria L.). Beitr Biol Pflanzen 7:315–406

    Google Scholar 

  • Hood ME, Condom JM, Timko MP, Riopel JL (1998) Primary haustorial development of Striga asiatica on host and nonhost species. Phytopathology 88:70–75

    Article  PubMed  CAS  Google Scholar 

  • Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K (2011) Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 6:e25802

    Article  PubMed  CAS  Google Scholar 

  • Joel DM (2007) Direct infection of potato tubers by the root parasite Orobanche aegyptiaca. Weed Res 47:276–279

    Article  Google Scholar 

  • Joel DM, Losner-Goshen D (1994) The attachment organ of the parasitic angiosperms Orobanche cumana and O. aegyptiaca and its development. Can J Bot 72:564–574

    Article  Google Scholar 

  • Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10:35–50

    CAS  Google Scholar 

  • Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230

    PubMed  CAS  Google Scholar 

  • Koch L (1887) Die Entwicklungsgeschichte der Orobanchen, mit besonderer Berücksichtigung ihrer Beziehungen zu den Kulturpflanzen. C. Winter’s Universitëtsbuchhandlung, Heidelberg

    Google Scholar 

  • Krause D (1989) Striga – Biologie, Schaden, Kontrolle. Mikrokosmos 78:289–294

    Google Scholar 

  • Krause D (1990) Vergleichende morphologisch/anatomische Untersuchungen an Striga Arten (Scrophulariaceae). Dissertation, Philipps-University, Marburg

    Google Scholar 

  • Krenner JA (1958) The natural history of the sunflower broomrape (Orobanche cumana Wallr.). Acta Bot Acad Sci Hungar 4:113–144

    Google Scholar 

  • Kuijt J (1969) The Biology of parasitic flowering plants. University of California Press, Berkeley

    Google Scholar 

  • Kuijt J (1977) Haustoria of phanerogamic parasites. Ann Rev Phytopathol 17:91–118

    Article  Google Scholar 

  • Kuijt J (1991) The haustorial interface: what does it tell us? In: Ransom J, Musselman LJ, Warsham AD, Parker C (eds) Proceedings of the 5th international symposium on parasitic weeds. CIMMYT, Nairobi

    Google Scholar 

  • Kuijt J, Dobbin DR (1971) Phloem in the haustorium of Castilleja (Scrophulariaceae). Can J Bot 49:1735–1737

    Article  Google Scholar 

  • Kuijt J, Toth R (1985) Structure of the host-parasite interface of Boschniakia hookeri (Orobanchaceae). Acta Bot Neerl 34:257–270

    Google Scholar 

  • Kuijt J, Visser JH, Weber HC (1978) Morphological observations on leaf haustoria and related organs of the South African genus Hyobanche (Scrophulariaceae). Can J Bot 56:2981–2986

    Article  Google Scholar 

  • Labrousse P, Delmail D, Arnaud MC, Thalouarn P (2010) Mineral nutrient concentration influences sunflower infection by broomrape (Orobanche cumana). Botany 88:839–849

    Article  CAS  Google Scholar 

  • Mayer MJ, Steel J, Child DV, Hargreaves JA, Bailey JA (1997) Early stages of infection of maize (Zea mays) and Pennisetum setosum roots by the parasitic plant Striga hermonthica. Eur J Plant Pathol 103:815–827

    Article  Google Scholar 

  • McCully ME, Mallett JE (1993) The branch root of Zea. 3. vascular connections and bridges for nutrient recycling. Ann Bot 71:327–341

    Article  Google Scholar 

  • Morita MT (2010) Directional gravity sensing in gravitropism. Ann Rev Plant Biol 61:705–720

    Article  CAS  Google Scholar 

  • Musselman LJ (1980) The biology of Striga, Orobanche, and other root-parasitic weeds. Ann Rev Phytopathol 18:463–489

    Article  Google Scholar 

  • Musselman LJ, Dickison WC (1975) The structure and development of the haustorium in parasitic Scrophulariaceae. Bot J Linn Soc 70:183–212

    Article  Google Scholar 

  • Musselman LJ, Mann WF (1978) Root parasites of southern forests. Forest Service, USDA. General Technical Report SO-20

    Google Scholar 

  • Ndambi B, Cadisch G, Elzein A, Heller A (2011) Colonization and control of Striga hermonthica by Fusarium oxysporum f. sp. strigae, a mycoherbicide component: an anatomical study. Biol Cont 58:149–159

    Article  Google Scholar 

  • Neumann U (1999) Etude ontogénique, structural et immunocytochimique des suçoirs de trios Scrophulariacées parasites africaines. Thése Doctorat de l’université Pierre et Marie Curie, Paris VI

    Google Scholar 

  • Neumann U, Sallé G, Weber HC (1998) Development and structure of the haustorium of the parasite Rhamphicarpa fistulosa (Scrophulariaceae). Bot Acta 111:354–365

    Google Scholar 

  • Neumann U, Vian B, Weber HC, Sallé G (1999) Interface between haustoria of parasitic members of the Scrophulariaceae and their hosts: a histochemical and immunocytochemical approach. Protoplasma 207:84–97

    Article  Google Scholar 

  • Niranjana R (1994) Morphological Studies in some root parasitic angiosperms. Thesis, University of Mysore, India

    Google Scholar 

  • Nwoke FIO (1982) Structure and development of the mature secondary haustorium in Alectra vogelii Benth. Ann Bot 49:677–684

    Google Scholar 

  • Nwoke FIO, Okonkwo SNC (1978) Structure and development of the primary haustorium in Alectra vogelii Benth. (Scrophulariaceae). Ann Bot 42:447–454

    Google Scholar 

  • Okonkwo SNC, Nwoke FIO (1978) Initiation, development and structure of the primary haustorium in Striga gesnerioides (Scrophulariaceae). Ann Bot 42:455–463

    Google Scholar 

  • Olsen S, Olsen ID (1981) Germination and development of the soma in Boschniakia hookeri (Orobanchaceae). Nord J Bot 1:246–259

    Article  Google Scholar 

  • Ouédraogo O, Neumann U, Raynal-Roques A, Sallé G, Tuquet C, Dembélé B (1999) New insights concerning the ecology and the biology of Rhamphicarpa fistulosa (Scrophulariaceae). Weed Res 39:159–169

    Article  Google Scholar 

  • Percival WC (1931) The parasitism of Conopholis americana on Quercus borealis. Am J Bot 10:817–837

    Article  Google Scholar 

  • Piehl MA (1963) Mode of attachment, haustorium structure, and hosts of Pedicularis canadensis. Am J Bot 50:978–985

    Article  Google Scholar 

  • Rajanna L, Shivamurthy GR, Niranjana R, Vijay CR (2005) Occurrence of phloem in the haustorium of Aeginetia pedunculata Wall. – a root holoparasite of Orobanchaceae. Taiwania 50:109–116

    Google Scholar 

  • Renaudin S (1974) Contribution a l’étude de la biologie des phanérogames parasites: Recherches sur Lathraea clandestina L. (Scrophulariaceae). Thése, U.E.R. des Sciences de la Nature de l’Université de Nantes, France

    Google Scholar 

  • Riopel J, Musselman L (1979) Experimental initiation of haustoria in Agalinis purpurea. Am J Bot 66:570–575

    Article  Google Scholar 

  • Riopel JL, Timko MP (1995) Haustorial initiation and differentiation. In: Press MC, Graves JD (eds) Parasitic plants. Chapman & Hall, London, pp 39–79

    Google Scholar 

  • Rogers WE, Nelson RR (1962) Penetration and nutrition of Striga asiatica. Phytopathology 52:1064–1070

    Google Scholar 

  • Rümer S, Cameron DD, Wacker R, Hartung W, Jiang F (2007) An anatomical study of the haustoria of Rhinanthus minor attached to roots of different hosts. Flora 202:194–200

    Article  Google Scholar 

  • Sachs T (1991) Pattern formation in plant tissues. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sallé G (1987) Originsalités des tissus conducteurs des phanérogames parasites. Bull Soc Bot Fr Actual Bot 134(3/4):81–95

    Google Scholar 

  • Schmucker T (1959) Höhere Parasiten. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, Springer Verlag, Berlin, vol 11. 480–529

    Google Scholar 

  • Schrenk H (1894) Parasitism of Epiphegus virginiana. In: Proceedings of the American microscopical society, 16th annual meeting, vol 15(2), pp 91–127

    Google Scholar 

  • Stephens (1912) The structure and development of the haustorium of Striga lutea. Ann Bot 26:1067–1076

    Google Scholar 

  • Tate P (1925) On the anatomy of Orobanche hederae Duby, and its attachment to the host. New Phytol 24:284–293

    Article  Google Scholar 

  • Teryokhin ES (1997) Weed broomrapes. Aufsteig Verlag, Germany

    Google Scholar 

  • Tomilov A, Tomilova N, Yoder JI (2007) Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225:1059–1071

    Article  PubMed  CAS  Google Scholar 

  • Visser J, Dörr I (1987) The haustorium. In: Musselman LJ (ed) Parasitic weeds in agriculture, vol I, Striga. CRC, Boca Raton, FL, pp 91–106

    Google Scholar 

  • Visser JH, Dörr I, Kollmann R (1977) On the parasitism of Alectra vogelii Benth. (Scrophulariaceae). I. Early development of the primary haustorium and initiation of the stem. Z Pflanzenphysiol 84:213–222

    Article  Google Scholar 

  • Visser J, Dörr I, Kollmann R (1979) On the parasitism of Alectra vogelii Benth. (Scrophulariaceae). III. The occurrence of phloem between host and parasite. Z Pflanzenphysiol 94:427–439

    Google Scholar 

  • Visser JH, Dörr I, Kollmann R (1984) The “hyaline body” of the root parasite Alectra orobanchoides Benth. (Scrophulariaceae), its anatomy, ultrastructure and histochemistry. Protoplasma 121:146–156

    Google Scholar 

  • Weber HC (1975) Der Parasitismus mitteleuropäischer Rhinanthoideae unter Berücksichtigung vergleichender morphologisch und anatomischer Untersuchungen an den Haustorien. Dissertation, Justus Liebig University, Giessen

    Google Scholar 

  • Weber HC (1976a) Über Wirtspflanzen und Parasitismus einiger mitteleuropäischer Rhinanthoideae (Scrophulariaceae). Plant Syst Evol 125:97–107

    Article  Google Scholar 

  • Weber HC (1976b) Studies on new types of haustoria in some central European Rhinanthoideae (Scrophulariaceae). Plant Syst Evol 125:223–232

    Article  Google Scholar 

  • Weber HC (1976c) Anatomische Studien an den Haustorien einiger parasitischer Scrophulariaceen Mitteleuropas. Ber Dtsch Bot Ges 89:57–84

    Google Scholar 

  • Weber HC (1980) Zur Evolution des Parasitismus bei den Scrophulariaceae und Orobanchaceae. Plant Syst Evol 136:217–232

    Google Scholar 

  • Weber HC (1987a) Untersuchungen an parasitischen Scrophulariaceen (Rhinanthoideen) in Kultur. II. Interaktionen zwischen Parasit und Wirt. Flora 179:35–44

    Google Scholar 

  • Weber HC (1987b) Evolution of the secondary haustoria to a primary haustorium in the parasitic Scrophulariaceae/Orobanchaceae. Plant Syst Evol 156:127–131

    Article  Google Scholar 

  • Weber HC (1993) Parasitism von Blütenpflanzen. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Weber HC, Mickler KD (1986) Parasitism in the Scrophulariaceae Lesquereuxia syriaca (Synonym Siphonostegia syriaca). Ber Deuts Bot Ges 99:123–131

    Google Scholar 

  • Weber HC, Visser JH (1980) Zur anatomischen Struktur der aus Schuppenblättern hervorgegangen Kontaktorgane von Hyobanche (Scrophulariaceae). Flora 169:476–497

    Google Scholar 

  • Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235

    Article  PubMed  CAS  Google Scholar 

  • White-Pennypacker B, Nelson PE, Wilhelm S (1979) Anatomic changes resulting from the parasitism of tomato by Orobanche ramosa. Phytopathology 69:741–748

    Article  Google Scholar 

  • Zhou WJ, Yoneyama K, Takeuchi Y, Rungmekarat S, Chae SH, Sato D, Joel DM (2004) In vitro infection of host roots by differentiated calli of the parasitic plant Orobanche. J Exp Bot 55:899–907

    Article  PubMed  CAS  Google Scholar 

  • Ziegler H (1955) Lathraea: ein Blutungssaftschmarotzer. Ber Deuts Bot Ges 68:311–318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Joel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joel, D.M. (2013). Functional Structure of the Mature Haustorium. In: Joel, D., Gressel, J., Musselman, L. (eds) Parasitic Orobanchaceae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38146-1_3

Download citation

Publish with us

Policies and ethics