Skip to main content

Are Karrikin Signaling Mechanisms Relevant to Strigolactone Perception?

  • Chapter
  • First Online:
Book cover Parasitic Orobanchaceae

Abstract

Karrikins found in smoke and the synthetic strigolactone GR24 induce similar developmental effects during early stages of Arabidopsis thaliana growth, including promotion of seed germination. Responses to karrikins and strigolactones are distinct at other growth stages, such as during the repression of axillary shoot growth. The F-box protein MAX2 is required for both signalling pathways. Two α-/β-hydrolase superfamily proteins, KAI2 and D14, control subsets of MAX2-regulated development. KAI2 is required for seed germination responses to karrikin and strigolactone treatments, while D14 mediates strigolactone-specific control of shoot branching. It is hypothesized that an orthologous pathway controls host-specific germination of the obligate parasitic Orobanchaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  PubMed  CAS  Google Scholar 

  • Chiwocha SDS, Dixon KW, Flematti GR, Ghisalberti EL, Merritt DJ, Nelson DC, Riseborough J-AM, Smith SM, Stevens JC (2009) Karrikins: a new family of plant growth regulators in smoke. Plant Sci 177:252–256

    Article  CAS  Google Scholar 

  • De Lange JH, Boucher C (1990) Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S Afr J Bot 56:700–703

    Google Scholar 

  • Dixon KW, Merritt DJ, Flematti GR, Ghisalberti EL (2009) Karrikinolide – a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration, and agriculture. Acta Hortic 813:155–170

    CAS  Google Scholar 

  • Fernandez-Aparicio M, Rubiales D, Bandaranayake PC, Yoder JI, Westwood JH (2011a) Transformation and regeneration of the holoparasitic plant Phelipanche aegyptiaca. Plant Methods 7:36

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Aparicio M, Yoneyama K, Rubiales D (2011b) The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res 21:55–61

    Article  Google Scholar 

  • Fischer NH, Weidenhamer JD, Bradow JM (1989) Dihydroparthenolide and other sesquiterpene lactones stimulate witchweed germination. Phytochemistry 28:2315–2317

    Article  CAS  Google Scholar 

  • Fischer NH, Weidenhamer JD, Riopel JL, Quijano L, Menelaou MA (1990) Stimulation of witchweed germination by sesquiterpene lactones: a structure-activity study. Phytochemistry 29:2479–2483

    Article  CAS  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977

    Article  PubMed  CAS  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2009) Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. J Agric Food Chem 57:9475–9480

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol 71:265–276

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  CAS  Google Scholar 

  • Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    Article  PubMed  CAS  Google Scholar 

  • Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K (2011) Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 6(10):e25802

    Article  PubMed  CAS  Google Scholar 

  • Joel DM, Chaudhuri SK, Plakhine D, Ziadna H, Steffens JC (2011) Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 72:624–634

    Article  PubMed  CAS  Google Scholar 

  • Keeley JE, Fotheringham CJ (1998) Smoke-induced seed germination in California chaparral. Ecology 79:2320–2336

    Article  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signalling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230:649–658

    Article  PubMed  CAS  Google Scholar 

  • Moreira B, Tormo J, Estrelles E, Pausas JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627–635

    Article  PubMed  CAS  Google Scholar 

  • Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM (2009) Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol 149:863–873

    Article  PubMed  CAS  Google Scholar 

  • Nelson DC, Flematti GR, Riseborough JA, Ghisalberti EL, Dixon KW, Smith SM (2010) Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:7095–7100

    Article  PubMed  CAS  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signalling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:8897–8902

    Article  PubMed  CAS  Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    Article  PubMed  CAS  Google Scholar 

  • Roche S, Koch JM, Dixon KW (1997) Smoke enhanced seed germination for mine rehabilitation in the southwest of Western Australia. Restor Ecol 5:191–203

    Article  Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Zhu L, Bu Q, Huq E (2012) MAX2 affects multiple hormones to promote photomorphogenesis. Mol Plant 5:750–762

    Article  PubMed  Google Scholar 

  • Somers DE, Fujiwara S (2009) Thinking outside the F-box: novel ligands for novel receptors. Trends Plant Sci 14:206–213

    Article  PubMed  CAS  Google Scholar 

  • Stevens JC, Merritt DJ, Flematti GR, Ghisalberti EL, Dixon KW (2007) Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil 298:113–124

    Article  CAS  Google Scholar 

  • Stirnberg P, van De Sande K, Leyser HM (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    PubMed  CAS  Google Scholar 

  • Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signalling module in plants. Curr Biol 21:338–345

    Article  Google Scholar 

  • Todorovic SLA, Zivkovic S, Giba Z, Grubisic D, Misic D (2007) Basic seed germination characteristics of the endemic species Nepeta rtanjensis (Lamiaceae). Plant Species Biol 22:205–210

    Article  Google Scholar 

  • Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117

    Article  PubMed  CAS  Google Scholar 

  • Tomilov A, Tomilova N, Yoder JI (2007) Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225:1059–1071

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    Article  PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • van Staden J, Jager AK, Light ME, Burger BV (2004) Isolation of the major germination cue from plant-derived smoke. S Afr J Bot 70:654–659

    Google Scholar 

  • Waters MT, Smith SM, Nelson DC (2011) Smoke signals and seed dormancy: where next for MAX2? Plant Signal Behav 6:1418–1422

    Article  PubMed  CAS  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235

    Article  PubMed  CAS  Google Scholar 

  • Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nelson, D.C. (2013). Are Karrikin Signaling Mechanisms Relevant to Strigolactone Perception?. In: Joel, D., Gressel, J., Musselman, L. (eds) Parasitic Orobanchaceae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38146-1_12

Download citation

Publish with us

Policies and ethics