Skip to main content

Induction of Germination

  • Chapter
  • First Online:
Parasitic Orobanchaceae

Abstract

Germination is the first crucial step in the life cycle of obligate root parasitic Orobanchaceae, which cannot survive on their own. Therefore, germination of the tiny seeds with minimal reserves should occur only near host roots. These parasites detect the presence of hosts by using root-derived signalling molecules belonging to several distinct classes of metabolites. Strigolactones, the most important germination stimulants, are derived from carotenoids through the action of carotenoid isomerase, carotenoid cleavage dioxygenases, and possibly a cytochrome P450 enzyme. Strigolactone production is increased under phosphate and nitrogen deficiencies. Strigolactones also attract arbuscular mycorrhizal fungi and act as plant hormones that decrease shoot and increase root branching. Various strigolactones have been identified, and the biological processes have differential sensitivity to different strigolactones. Germination stimulants may be a target for the control of parasitic weeds, but considering their other biological functions, such strategies need to be carefully analyzed for unwanted side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    PubMed  CAS  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    PubMed  CAS  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester HJ, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    PubMed  CAS  Google Scholar 

  • Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TJ, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant Cell Environ 26:1053–1066

    CAS  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    PubMed  CAS  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    PubMed  CAS  Google Scholar 

  • Auger B, Pouvreau J-B, Pouponneau K, Yoneyama K, Montiel G et al (2012) Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway. Mol Plant Microbe Interact 25:993–1004

    PubMed  CAS  Google Scholar 

  • Awad AA, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul 48:221–227

    CAS  Google Scholar 

  • Ayongwa GC, Stomph TJ, Emechebe AM, Kuyper TW (2006) Root nitrogen concentration of sorghum above 2% produces least Striga hermonthica seed stimulation. Ann Appl Biol 149:255–262

    CAS  Google Scholar 

  • Babalola OO, Osir EO, Sanni AI (2002) Characterization of potential ethylene-producing rhizosphere bacteria of Striga-infested maize and sorghum. Afr J Biotechnol 1:67–69

    CAS  Google Scholar 

  • Babiker AG, Ejeta G, Butler LG, Woodson WR (1993a) Ethylene biosynthesis and strigol-induced germination of Striga asiatica. Physiol Plant 88:359–365

    CAS  Google Scholar 

  • Babiker AGT, Butler KG, Ejeta G, Woodson WR (1993b) Enhancement of ethylene biosynthesis and germination by cytokinins and 1-aminocyclopropane-1-carboxylic acid in Striga asiatica seeds. Physiol Plant 89:21–26

    CAS  Google Scholar 

  • Baldwin IT, Staszak-Kozinski L, Davidson R (1994) Up in smoke: smoke-derived germination cues for postfire annual, Nicotiana attenuata Torr. ex. Watson. J Chem Ecol 20:2345–2371

    CAS  Google Scholar 

  • Balzergue C, Puech-Pags V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060

    PubMed  CAS  Google Scholar 

  • Bar Nun N, Mayer AM (2005) Smoke chemicals and coumarin promote the germination of the parasitic weed Orobanche aegyptiaca. Isr J Plant Sci 53:97–101

    Google Scholar 

  • Berner DK, Schaad NW, Völksch B (1999) Use of ethylene-producing bacteria for stimulation of Striga spp. seed germination. Biol Control 15:274–282

    Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239–1247

    CAS  Google Scholar 

  • Bonser AM, Lynch J, Snapp S (1996) Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol 132:281–288

    PubMed  CAS  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signalling molecule. Curr Biol 14:1232–1238

    PubMed  CAS  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 Encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    PubMed  CAS  Google Scholar 

  • Brown NAC, van Staden J (1997) Smoke as a germination cue: a review. Plant Growth Regul 22:115–124

    CAS  Google Scholar 

  • Brown R, Johnson AW, Robinson E, Todd AR (1949) The stimulant involved in the germination of Striga hermonthica. Proc R Soc Lond B Biol Sci 136:395–404

    Google Scholar 

  • Brown R, Greenwood AD, Johnson AW, Long AG (1951a) The stimulant involved in the germination of Orobanche minor Sm. 1. Assay technique and bulk preparation of the stimulant. Biochem J 48:559–564

    PubMed  CAS  Google Scholar 

  • Brown R, Greenwood AD, Johnson AW, Long AG, Tyler GL (1951b) The stimulant involved in the germination of Orobanche minor Sm. 2. Chromatographic purification of crude concentrates. Biochem J 48:564–568

    PubMed  CAS  Google Scholar 

  • Brown R, Greenwood AD, Johnson AW, Lansdown AR, Long AG, Suderland N (1952a) The Orobanche germination factor. III. Concentration of the factor by counter current distribution. Biochem J 52:571–574

    PubMed  CAS  Google Scholar 

  • Brown R, Johnson AW, Robinson E, Tyler GL (1952b) The Striga germination factor. II. Chromatographic purification of crude concentrates. Biochem J 50:596–600

    PubMed  CAS  Google Scholar 

  • Butler LG (1995) Chemical communication between the parasitic weed Striga and its crop host. A new dimension in allelochemistry. In: Inderjit KM, Dakshini M, Enhelling FA (eds) Allelopathy, organisms, processes and applications. American Chemical Society, Washington, DC, pp 158–166

    Google Scholar 

  • Cardoso C, Ruyter-Spira C, Bouwmeester HJ (2011) Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci 180:414–420

    PubMed  CAS  Google Scholar 

  • Chae HS, Yoneyama K, Takeuchi Y, Joel DM (2004) Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor. Physiol Plant 120:328–337

    PubMed  CAS  Google Scholar 

  • Chang M, Netzly DG, Butler LG, Lynn DG (1986) Chemical regulation of distance: characterization of the first natural host germination stimulant for Striga asiatica. J Am Chem Soc 108:7858–7860

    PubMed  CAS  Google Scholar 

  • Chen VX, Boyer FD, Rameau C, Retailleau P, Vors JP, Beau JM (2010) Stereochemistry, total synthesis, and biological evaluation of the new plant hormone solanacol. Chem Eur J 16:13941–13945

    PubMed  CAS  Google Scholar 

  • Chittapur BM, Hunshal CS, Shenoy H (2001) Allelopathy in parasitic weed management: role of catch and trap crops. Allelopathy J 8:147–160

    Google Scholar 

  • Chiwocha SDS, Dixon KW, Flematti GR, Ghisalbert EL, Merritt DJ, Nelson DC, Riseborough J-AM, Smith SM, Stevens JC (2009) Karrikins: a new family of plant growth regulators in smoke. Plant Sci 177:252–256

    CAS  Google Scholar 

  • Cline M (1997) Concepts and terminology of apical dominance. Am J Bot 84:1064

    PubMed  CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    PubMed  CAS  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. II. The structure of strigol – a potent seed germination stimulant for witchweed (Striga lutea Lour.). J Am Chem Soc 94:6198–6199

    CAS  Google Scholar 

  • Daws MI, Pritchard HW, Van Staden J (2008) Butenolide from plant-derived smoke functions as a strigolactone analogue: evidence from parasitic weed seed germination. S Afr J Bot 74:116–120

    CAS  Google Scholar 

  • Dayan FE, Howell JL, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in planta mechanism of action. J Exp Bot 60:2107–2117

    PubMed  CAS  Google Scholar 

  • Delaux P-M, Xie X, Timme RE, Puech-Pages V, Dunand C et al (2012) Origin of strigolactones in the green lineage. New Phytol 195:857–871

    PubMed  CAS  Google Scholar 

  • Dixon KW, Roche S, Pate JS (1995) The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. Oecologia 101:185–192

    Google Scholar 

  • Dor E, Alperin B, Wininger S, Ben-Dor B, Somvanshi VS, Koltai H, Kapulnik Y, Hershenhorn J (2010) Characterization of a novel tomato mutant resistant to the weedy parasites Orobanche and Phelipanche spp. Euphytica 171:371–380

    CAS  Google Scholar 

  • Ejeta G (2007) Breeding for Striga resistance in sorghum: exploitation of an intricate host-parasite biology. Crop Sci 47:S216–S227

    Google Scholar 

  • El-Halmouch Y, Benharrat H, Thalouarn P (2006) Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development. Crop Prot 25:501–507

    Google Scholar 

  • Evidente A, Andolfi A, Fiore M, Boari A, Vurro M (2006) Stimulation of Orobanche ramosa seed germination by fusicoccin derivatives: a structure–activity relationship study. Phytochemistry 67:19–26

    PubMed  CAS  Google Scholar 

  • Evidente A, Fernández-Aparicio M, Cimmino A, Rubiales D, Andolfi A, Motta A (2009) Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett 50:6955–6958

    CAS  Google Scholar 

  • Evidente A, Cimmino A, Fernández-Aparicio M, Andolfi A, Rubiales D, Motta A (2010) Polyphenols, including the new peapolyphenols A-C, from pea root exudates stimulate Orobanche foetida seed germination. J Agric Food Chem 58:2902–2907

    PubMed  CAS  Google Scholar 

  • Evidente A, Cimmino A, Fernández-Aparicio M, Rubiales D, Andolfi A, Melck D (2011) Soyasapogenol B and trans-22-dehydrocampesterol from common vetch (Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest Manag Sci 67:1015–1022

    PubMed  CAS  Google Scholar 

  • Fernández-Aparicio M, García-Garrido JM, Ocampo JA, Rubiales D (2010) Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Res 50:262–268

    Google Scholar 

  • Fernández-Aparicio M, Yoneyama K, Rubiales D (2011) The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res 21:55–61

    Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengrove RD (2004) A compound from smoke that promotes seed germination. Science 305:977

    PubMed  CAS  Google Scholar 

  • Foo E, Turnbull CGN, Beveridge CA (2001) Long-distance signalling and the control of branching in the rms1 mutant of pea. Plant Physiol 126:203–209

    PubMed  CAS  Google Scholar 

  • Fukui K, Ito S, Ueno K, Yamaguchi S, Kyozuka J, Asami T (2011) Inhibition of rice branching and promotion of Striga germination by debranone derivatives mimicking strigolactone function. Bioorg Med Chem Lett 21:4905–4908

    PubMed  CAS  Google Scholar 

  • Goldwasser Y, Yoder JI (2001) Differential induction of Orobanche seed germination by Arabidopsis thaliana. Plant Sci 160:951–959

    PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    PubMed  CAS  Google Scholar 

  • Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signalling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    PubMed  CAS  Google Scholar 

  • Hauck C, Müller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478

    CAS  Google Scholar 

  • Hess DE, Ejeta G, Butler LG (1992) Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochemistry 31:493–497

    CAS  Google Scholar 

  • Höniges A, Ardelean A, Xie X, Yoneyama K, Yoneyama K, Wegmann K (2012) Towards understanding Orobanche host-specificity. Rom Agric Res 29:313–322

    Google Scholar 

  • Humphrey AJ, Beale MH (2006) Strigol: biogenesis and physiological activity. Phytochemistry 67:636–640

    PubMed  CAS  Google Scholar 

  • Ito S, Kitahata N, Umehara M, Hanada A, Kato A, Ueno K, Mashiguchi K, Kyozuka J, Yoneyama K, Yamaguchi S, Asami T (2010) A new lead chemical for strigolactone biosynthesis inhibitors. Plant Cell Physiol 51:1143–1150

    PubMed  CAS  Google Scholar 

  • Jain R, Foy CL (1992) Nutrient effects on parasitism and germination of Egyptian broomrape (Orobanche aegyptiaca). Weed Technol 6:269–275

    CAS  Google Scholar 

  • Jamil M, Charnikhova T, Verstappen F, Bouwmeester H (2010) Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Arch Biochem Biophys 504:123–131

    PubMed  CAS  Google Scholar 

  • Jamil M, Charnikhova T, Cardoso C, Jamil T, Ueno K, Verstappen F, Asami T, Bouwmeester HJ (2011a) Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res 51:373–385

    CAS  Google Scholar 

  • Jamil M, Rodenburg J, Charnikhova T, Bouwmeester HJ (2011b) Pre-attachment Striga hermonthica resistance of NERICA cultivars based on low strigolactone production. New Phytol 192:964–975

    PubMed  CAS  Google Scholar 

  • Joel DM, Hershenhorn J, Eizenburg H, Aly R, Ejeta G, Rich PJ, Ransom JK, Sauerborn J, Rubiales D (2007) Biology and management of weedy root parasites. In: Janick J (ed) Horticultural reviews. Wiley, London, pp 267–349

    Google Scholar 

  • Joel DM, Chaudhuri SK, Plakhine D, Ziadna H, Steffens JC (2011) Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 72:624–634

    PubMed  CAS  Google Scholar 

  • Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    PubMed  CAS  Google Scholar 

  • Keeley JE, Fotheringham CJ (1997) Trace gas emissions and smoke-induced seed germination. Science 276:1248–1250

    CAS  Google Scholar 

  • Kim HI, Xie X, Kim HS, Chun JC, Yoneyama K, Nomura T, Takeuchi Y, Yoneyama K (2010) Structure-activity relationship of naturally occurring strigolactones in Orobanche minor seed germination stimulation. J Pestic Sci 35:344–347

    CAS  Google Scholar 

  • Kisugi T, Xie X, Kim HI, Yoneyama K, Sado A, Akiyama K, Hayashi H, Uchida K, Yokota T, Nomura T, Yoneyama K (2013) Strigone, the first isolation and identification as a natural strigolactone from Houttuynia cordata. Phytochemistry 87:60–64

    PubMed  CAS  Google Scholar 

  • Kitahata N, Ito S, Kato A, Ueno K, Nakano T, Yoneyama K, Asami T (2011) Abamine as a basis for new designs of regulators of strigolactone production. J Pestic Sci 36:53–57

    CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011a) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    PubMed  CAS  Google Scholar 

  • Kohlen W, Ruyter-Spira C, Bouwmeester HJ (2011b) Strigolactones. A new musician in the orchestra of plant hormones. Botany 89:827–840

    CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, López-Ráez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signalling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547

    PubMed  CAS  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel D, Weininger S, Lekalla S, Shealtiel H, Bahattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y (2010a) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136

    CAS  Google Scholar 

  • Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Yoneyama K, Hershenhorn J, Joel DM, Kapulnik Y (2010b) A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot 61:1739–1749

    PubMed  CAS  Google Scholar 

  • Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech-Pagès V, Dor BB, Resnick N, Wininger S, Kapulnik Y (2011) Light is a positive regulator of strigolactone levels in tomato roots. J Plant Physiol 168:1993–1996

    PubMed  CAS  Google Scholar 

  • Kondo Y, Tadokoro E, Matsuura M, Iwasaki K, Sugimoto Y, Miyake H, Takikawa H, Sasaki M (2007) Synthesis and seed germination stimulating activity of some imino analogs of strigolactones. Biosci Biotechnol Biochem 71:2781–2786

    PubMed  CAS  Google Scholar 

  • Kusumoto D, Chae SH, Mukaida K, Yoneyama K, Joel DM, Takeuchi Y (2006) Effects of fluridone and norflurazon on conditioning and germination of Striga asiatica seeds. Plant Growth Regul 48:73–78

    CAS  Google Scholar 

  • Ledger SE, Janssen BJ, Karunairetnam S, Wang T, Snowden KC (2010) Modified CAROTENOID CLEAVAGE DIOXYGENASE8 expression correlates with altered branching in kiwifruit (Actinidia chinensis). New Phytol 188:803–813

    PubMed  CAS  Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, Van Ast A (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behav 2:58–62

    PubMed  Google Scholar 

  • Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525

    PubMed  CAS  Google Scholar 

  • Logan DC, Stewart GR (1991) Role of ethylene in the germination of the hemiparasite Striga hermonthica. Plant Physiol 97:1435–1438

    PubMed  CAS  Google Scholar 

  • López-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008a) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Mulder P, Kohlen W, Bino R, Levin I, Bouwmeester H (2008b) Susceptibility of the tomato mutant high pigment-2dg (hp-2 dg) to Orobanche spp. infection. J Agric Food Chem 56:6326–6332

    PubMed  Google Scholar 

  • López-Ráez JA, Matusova R, Cardoso C, Jamil M, Charnikhova T, Kohlen W, Ruyter-Spira C, Verstappen F, Bouwmeester H (2008c) Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci 64:471–477

    Google Scholar 

  • López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, Bouwmeester H (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354

    PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Fernandez I, Bouwmeester HJ, Pozo MJ (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297

    PubMed  Google Scholar 

  • Lynn DG, Chang M (1990) Phenolic signals in cohabitation: implications for plant development. Annu Rev Plant Physiol Plant Mol Biol 41:497–526

    CAS  Google Scholar 

  • Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131:1381–1390

    PubMed  CAS  Google Scholar 

  • Macías FA, García-Díaz MD, Pérez-de-Luque A, Rubiales D, Galindo JCG (2009) New chemical clues for broomrape-sunflower host–parasite interactions: synthesis of guaianestrigolactones. J Agric Food Chem 57:5853–5864

    PubMed  Google Scholar 

  • Matsuura H, Ohashi K, Sasako H, Tagawa N, Takano Y, Ioka Y, Nabeta K, Yoshihara T (2008) Germination stimulant from root exudates of Vigna unguiculata. Plant Growth Regul 54:31–36

    CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    PubMed  CAS  Google Scholar 

  • Mori K, Matsui J, Bando M, Kido M, Takeuchi Y (1998) Synthetic disproof against the structure proposed for alectrol, the germination stimulant from Vigna unguiculata. Tetrahedron Lett 39:6023–6026

    CAS  Google Scholar 

  • Müller S, Hauck C, Schildknecht H (1992) Germination stimulants produced by Vigna unguiculata Walp cv Saunders Upright. J Plant Growth Regul 11:77–84

    Google Scholar 

  • Mwakaboko AS, Zwanenburg B (2011) Strigolactone analogs derived from ketones using a working model for germination stimulants as a blueprint. Plant Cell Physiol 52:699–715

    PubMed  CAS  Google Scholar 

  • Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138:2061–2074

    PubMed  CAS  Google Scholar 

  • Nefkens GHL, Thuring JWJF, Beenakkers MFM, Zwanenburg B (1997) Synthesis of a phthaloylglycine-derived strigol analogue and its germination stimulatory activity towards seeds of the parasitic weeds Striga hermonthica and Orobanche crenata. J Agric Food Chem 45:2273–2277

    CAS  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signalling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:8897–8902

    PubMed  CAS  Google Scholar 

  • Pérez de Luque AP, Galindo JCG, Macías FA, Jorrín J (2000) Sunflower sesquiterpene lactone models induce Orobanche cumana seed germination. Phytochemistry 53:45–50

    PubMed  Google Scholar 

  • Pérez-Torres C-A, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    PubMed  CAS  Google Scholar 

  • Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogué F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–1539

    PubMed  CAS  Google Scholar 

  • Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626

    PubMed  CAS  Google Scholar 

  • Rubiales D, Verkleij J, Vurro M, Murdoch AJ, Joel DM (2009) Parasitic plant management in sustainable agriculture. Weed Res 49:1–5

    Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    PubMed  CAS  Google Scholar 

  • Sánchez-Calderón L, Lopez-Bucio J, Chacon-Lopez A, Cruz-Ramirez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    PubMed  Google Scholar 

  • Sergeant MJ, Li J-J, Fox C, Brookbank N, Rea D, Bugg TD, Thompson AJ (2009) Selective inhibition of carotenoid cleavage dioxygenases: phenotypic effects on shoot branching. J Biol Chem 284:5257–5264

    PubMed  CAS  Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483

    PubMed  CAS  Google Scholar 

  • Siame BP, Weerasuriya Y, Wood K, Ejeta G, Butler LG (1993) Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J Agric Food Chem 41:1486–1491

    CAS  Google Scholar 

  • Sliwinska E, Bassel GW, Bewley JD (2009) Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. J Exp Bot 60:3587–3594

    PubMed  CAS  Google Scholar 

  • Snowden KC, Simkin AJ, Janssen BJ et al (2005) The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746–759

    PubMed  CAS  Google Scholar 

  • Sorefan K, Booker J, Haurogné K et al (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    PubMed  CAS  Google Scholar 

  • Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    PubMed  CAS  Google Scholar 

  • Sugimoto Y, Ali AM, Yabuta S, Kinoshita H, Inanaga S, Itai A (2003) Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis. Physiol Plant 119:1–9

    Google Scholar 

  • Sun Z, Matusova R, Bouwmeester HJ (2007) Germination of Striga and chemical signalling involved: a target for control methods. In: Gressel J, Ejeta G (eds) Integrating new technologies for Striga control: towards ending the witch-hunt. World Scientific, Singapore, pp 47–60

    Google Scholar 

  • Sun Z, Has J, Walter MH et al (2008) Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228:789–801

    PubMed  CAS  Google Scholar 

  • Taylor J, Harrier LA (2003) Expression studies of plant genes differentially expressed in leaf and root tissues of tomato colonised by the arbuscular mycorrhizal fungus Glomus mosseae. Plant Mol Biol 51:619–629

    PubMed  CAS  Google Scholar 

  • Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117

    PubMed  CAS  Google Scholar 

  • Troughton A (1977) The effect of phosphorus nutrition upon the growth and morphology of young plants of Lolium perenne L. Ann Bot 41:85–92

    Google Scholar 

  • Tsuchiya Y, McCourt P (2009) Strigolactones: a new hormone with a past. Curr Opin Plant Biol 12:556–561

    PubMed  CAS  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    PubMed  CAS  Google Scholar 

  • Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y (2011) Ent-2′-epi-orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. J Agric Food Chem 59:10485–10490

    PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    PubMed  CAS  Google Scholar 

  • Vaucher JP (1823) Mémoire sur la germination des orobanches. Mém Mus Hist nat Paris 10:261–273

    Google Scholar 

  • Virtue JG, DeDear C, Potter MJ, Rieger M (2006) Potential use of isothiocyanates in branched broomrape eradication. In: Preston C, Watts JHW, Crossman ND (eds) 15th Australian weeds conference, Adelaide. pp 629–632

    Google Scholar 

  • Vogel JT, Walter MH, Giavalisco P et al (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311

    PubMed  CAS  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    PubMed  CAS  Google Scholar 

  • Weerasuriya Y, Siame BA, Hess D, Ejets G, Butler LG (1993) Influence of conditions and genotype on the amount of Striga germination stimulants exuded by root of several host crops. J Agric Food Chem 41:1492–1496

    CAS  Google Scholar 

  • Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235

    PubMed  CAS  Google Scholar 

  • Wigchert SCM, Kuiper E, Boelhouwer GJ, Nefkens GHL, Verkleij JAC, Zwanenburg B (1999) Dose–response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR 24 and Nijmegen 1. J Agric Food Chem 47:1705–1710

    PubMed  CAS  Google Scholar 

  • Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K (2007) 2′-Epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55:8067–8072

    PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y, Yoneyama K (2008a) Sorgomol, germination stimulant for root parasitic plants, produced by Sorghum bicolor. Tetrahedron Lett 49:2066–2068

    CAS  Google Scholar 

  • Xie X, Yoneyama K, Kusumoto D, Yamada Y, Yokota T, Takeuchi Y, Yoneyama K (2008b) Isolation and identification of alectrol as (+)-orobanchyl acetate, a novel germination stimulant for root parasitic plants. Phytochemistry 69:427–431

    PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Harada Y, Fusegi N, Yamada Y, Ito S, Yokota T, Takeuchi Y, Yoneyama K (2009a) Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry 70:211–215

    PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Kurita J-Y, Harada Y, Yamada Y, Takeuchi Y, Yoneyama K (2009b) 7-Oxoorobanchyl acetate and 7-oxoorobanchol as germination stimulants for root parasitic plants from flax (Linum usitatissimum). Biosci Biotechnol Biochem 73:1367–1370

    PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K (2012) Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant 6:153–163

    PubMed  Google Scholar 

  • Yasuda N, Sugimoto Y, Kato M, Inanaga S, Yoneyama K (2003) (+)-Strigol, a witchweed seed germination stimulant, from Menispermum dauricum root culture. Phytochemistry 62:1115–1119

    PubMed  CAS  Google Scholar 

  • Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973

    CAS  Google Scholar 

  • Yoneyama K, Ogasawara M, Takeuchi Y, Konnai M, Sugimoto Y, Seto H, Yoshida S (1998a) Effect of jasmonates and related compounds on seed germination of Orobanche minor Smith and Striga hermonthica (Del.) Benth. Biosci Biotechnol Biochem 62:1448–1450

    CAS  Google Scholar 

  • Yoneyama K, Takeuchi Y, Ogasawara M, Konnai M, Sugimoto Y, Sassa T (1998b) Cotylenins and fusicoccins stimulate seed germination of Striga hermonthica (Del.) Benth and Orobanche minor Smith. J Agric Food Chem 46:1583–1586

    CAS  Google Scholar 

  • Yoneyama K, Takeuchi Y, Yokota T (2001) Production of clover broomrape seed germination stimulants by red clover root requires nitrate but is inhibited by phosphate and ammonium. Physiol Plant 112:25–30

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007a) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Takeuchi Y (2009) Strigolactones; structures and biological activities. Pest Manag Sci 65:467–470

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y (2010) Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol 51:1095–1103

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    PubMed  CAS  Google Scholar 

  • Zehhar N, Ingouff M, Bouya D, Fer A (2002) Possible involvement of gibberellins and ethylene in Orobanche ramosa germination. Weed Res 42:464–469

    CAS  Google Scholar 

  • Zhelev N (1987) The biological role of exogenic factors in broomrape germination. Rastenievudni Nauki 26:36–43 (in Bulgarian)

    Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–698

    PubMed  CAS  Google Scholar 

  • Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci 65:478–491

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

KY acknowledges grants from KAKENHI (18208010, 23338006) and Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry. HB acknowledges funding by the Netherlands Organization for Scientific Research (NWO; VICI grant, 865.06.002 and Equipment grant, 834.08.001). He was co-financed by the Centre for BioSystems Genomics (CBSG) which is part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Yoneyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoneyama, K., Ruyter-Spira, C., Bouwmeester, H. (2013). Induction of Germination. In: Joel, D., Gressel, J., Musselman, L. (eds) Parasitic Orobanchaceae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38146-1_10

Download citation

Publish with us

Policies and ethics