Skip to main content

Diversity in Classifier Ensembles: Fertile Concept or Dead End?

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Abstract

Diversity is deemed a crucial concept in the field of multiple classifier systems, although no exact definition has been found so far. Existing diversity measures exhibit some issues, both from the theoretical viewpoint, and from the practical viewpoint of ensemble construction. We propose to address some of these issues through the derivation of decompositions of classification error, analogue to the well-known bias-variance-covariance and ambiguity decompositions of regression error. We then discuss whether the resulting decompositions can provide a more clear definition of diversity, and whether they can be exploited more effectively for the practical purpose of ensemble construction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A new ensemble diversity measure applied to thinning ensembles. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 306–316. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Ensemble diversity measures and their application to thinning. Information Fusion 6, 49–62 (2005)

    Article  Google Scholar 

  3. Breiman, L.: Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department, University of California, Berkeley, CA (1996)

    Google Scholar 

  4. Brown, G., Wyatt, J.L., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Information Fusion 6, 5–20 (2005)

    Article  Google Scholar 

  5. Brown, G., Wyatt, J.L., Tino, P.: Managing diversity in regression ensembles. Journal of Machine Learning Research 6, 1621–1650 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Brown, G.: An information theoretic perspective on multiple classifier systems. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 344–353. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Brown, G., Kuncheva, L.I.: “Good” and “Bad” diversity in majority vote ensembles. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 124–133. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40, 139–157 (2000)

    Article  Google Scholar 

  9. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Domingos, P.: A unified bias-variance decomposition for zero-one and squared loss. In: 7th Int. Conf. on Artificial Intelligence, pp. 564–569 (2000)

    Google Scholar 

  11. Dutta, H.: Measuring Diversity in Regression Ensembles. In: 4th Indian Int. Conf. on Artificial Intelligence, pp. 2220–2236 (2009)

    Google Scholar 

  12. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4, 1–58 (1992)

    Article  Google Scholar 

  13. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image classification purposes. Image and Vision Computing 19, 699–707 (2001)

    Article  Google Scholar 

  14. Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A.: Pruning in ordered regression bagging ensembles. In: Int. Joint Conf. Neural Net., pp. 1266–1273 (2006)

    Google Scholar 

  15. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)

    Article  Google Scholar 

  16. Ko, A.H.-R., Sabourin, R., DeSouza Britto Jr., A.: Compound diversity functions for ensemble selection. Int. J. Patt. Rec. Artificial Intelligence 23, 659–686 (2009)

    Google Scholar 

  17. Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss functions. In: 13th Int. Conf. Mac. Learn., pp. 275–283. Morgan Kaufmann (1996)

    Google Scholar 

  18. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Adv. in Neural Inf. Proc. Systems, vol. 7, pp. 231–238. MIT Press (1995)

    Google Scholar 

  19. Kuncheva, L.I.: That elusive diversity in classifier ensembles. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 1126–1138. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mac. Learn. 51, 181–207 (2003)

    Article  MATH  Google Scholar 

  21. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken (2004)

    Book  MATH  Google Scholar 

  22. Lam, L., Suen, C.Y.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics - Part C 27, 553–568 (1997)

    Article  Google Scholar 

  23. Li, N., Yu, Y., Zhou, Z.-H.: Diversity Regularized Ensemble Pruning. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 330–345. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Littlewood, B., Miller, D.R.: Conceptual modeling of coincident failures in multiversion software. IEEE Transactions on Software Engineering 15, 1596–1614 (1989)

    Article  MathSciNet  Google Scholar 

  25. Liu, Y.: Negative Correlation Learning and Evolutionary Neural Network Ensembles. PhD thesis, University College, The University of New South Wales, Australian Defence Force Academy, Canberra, Australia (1998)

    Google Scholar 

  26. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: 14th Int. Conf. on Machine Learning, pp. 211–218 (1997)

    Google Scholar 

  27. Partalas, I., Tsoumakas, G., Hatzikos, E.V., Vlahavas, I.P.: Greedy regression ensemble selection: Theory and an application to water quality prediction. Information Sciences 178, 3867–3879 (2008)

    Article  Google Scholar 

  28. Partridge, D., Krzanowski, W.J.: Software diversity: practical statistics for its measurement and exploitation. Information & Software Technology 39, 707–717 (1997)

    Article  Google Scholar 

  29. Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Spech and Vision, pp. 126–142. Chapman & Hall, New York (1993)

    Google Scholar 

  30. Rooney, N., Patterson, D., Nugent, C.: Reduced ensemble size stacking. In: 16th Int. Conf. on Tools with Artificial Intelligence, pp. 266–271 (2004)

    Google Scholar 

  31. Sharkey, A.J.C., Sharkey, N.E.: Combining diverse neural nets. The Knowledge Engineering Review 12, 231–247 (1997)

    Article  Google Scholar 

  32. Shipp, C.A., Kuncheva, L.I.: Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion 3, 135–148 (2002)

    Article  Google Scholar 

  33. Sirlantzis, K., Hoque, S., Fairhurst, M.C.: Diversity in multiple classifier ensembles based on binary feature quantisation with application to face recognition. Applied Soft Computing 8, 437–445 (2008)

    Article  Google Scholar 

  34. Sun, Q., Pfahringer, B.: Bagging Ensemble Selection for Regression. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 695–706. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  35. Tang, E.K., Suganthan, P.N., Yao, X.: An analysis of diversity measures. Machine Learning 65, 247–271 (2006)

    Article  Google Scholar 

  36. Tumer, K., Ghosh, J.: Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition 29, 341–348 (1996)

    Article  Google Scholar 

  37. Ueda, N., Nakano, R.: Generalization error of ensemble estimators. In: Int. Conf. on Neural Networks, pp. 90–95 (1996)

    Google Scholar 

  38. Wang, D., Alhamdoosh, M.: Evolutionary extreme learning machine ensembles with size control. Neurocomputing 102, 98–110 (2013)

    Article  Google Scholar 

  39. Yu, Y., Zhou, Z.-H., Ting, K.M.: Cocktail Ensemble for Regression. In: 7th Int. Conf. Data Mining, pp. 721–726. IEEE Computer Society (2007)

    Google Scholar 

  40. Yu, Y., Li, Y.-F., Zhou, Z.-H.: Diversity regularized machine. In: 22nd Int. Joint Conf. on Artificial Intelligence, pp. 1603–1608 (2011)

    Google Scholar 

  41. Zenobi, G., Cunningham, P.: Using Diversity in Preparing Ensembles of Classifiers Based on Different Feature Subsets to Minimize Generalization Error. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 576–587. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  42. Zhang, M.-L., Zhou, Z.-H.: Exploiting unlabeled data to enhance ensemble diversity. Data Min. Knowl. Disc. 26, 98–129 (2013)

    Article  MATH  Google Scholar 

  43. Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artificial Intelligence 137, 239–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou, Z.-H., Li, N.: Multi-information Ensemble Diversity. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 134–144. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  45. Yu, Y., Li, Y.-F., Zhou, Z.-H.: Diversity regularized machine. In: Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pp. 1603–1608 (2011)

    Google Scholar 

  46. Zhou, Z.-H.: Introduction to Ensemble Methods. CRC Press (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Didaci, L., Fumera, G., Roli, F. (2013). Diversity in Classifier Ensembles: Fertile Concept or Dead End?. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics