Skip to main content

Exact Solution Methodologies for Linear and (Mixed) Integer Bilevel Programming

  • Chapter
Book cover Metaheuristics for Bi-level Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 482))

Abstract

Bilevel programming is a special branch of mathematical programming that deals with optimization problems which involve two decision makers who make their decisions hierarchically. The problem’s decision variables are partitioned into two sets, with the first decision maker (referred to as the leader) controlling the first of these sets and attempting to solve an optimization problem which includes in its constraint set a second optimization problem solved by the second decision maker (referred to as the follower), who controls the second set of decision variables. The leader goes first and selects the values of the decision variables that he controls.With the leader’s decisions known, the follower solves a typical optimization problem in his self-controlled decision variables. The overall problem exhibits a highly combinatorial nature, due to the fact that the leader, anticipating the follower’s reaction, must choose the values of his decision variables in such a way that after the problem controlled by the follower is solved, his own objective function will be optimized. Bilevel optimization models exhibit wide applicability in various interdisciplinary research areas, such as biology, economics, engineering, physics, etc. In this work, we review the exact solution algorithms that have been developed both for the case of linear bilevel programming (both the leader’s and the follower’s problems are linear and continuous), as well as for the case of mixed integer bilevel programming (discrete decision variables are included in at least one of these two problems). We also document numerous applications of bilevel programming models from various different contexts. Although several reviews dealing with bilevel programming have previously appeared in the related literature, the significant contribution of the present work lies in that a) it is meant to be complete and up to date, b) it puts together various related works that have been revised/corrected in follow-up works, and reports in sequence the works that have provided these corrections, c) it identifies the special conditions and requirements needed for the application of each solution algorithm, and d) it points out the limitations of each associated methodology. The present collection of exact solution methodologies for bilevel optimization models can be proven extremely useful, since generic solution methodologies that solve such problems to global or local optimality do not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Khayyal, F.A.: An implicit enumeration procedure for the general linear complementarity problem. Mathematical Programming Studies 31, 1–20 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amouzegar, M.A., Moshirvaziri, K.: Determining optimal pollution control policies: An application of bilevel programming. European Journal of Operational Research 119, 100–120 (1999)

    Article  MATH  Google Scholar 

  3. Anandalingam, G., Apprey, V.: Multi-level programming and conflict resolution. European Journal of Operational Research 51, 233–247 (1991)

    Article  MATH  Google Scholar 

  4. Anandalingam, G., White, D.J.: A solution method for the linear static stackelberg problem using penalty functions. IEEE Transactions on Automatic Control 35(10), 1170–1173 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0-1 programming problems. Journal of Optimization Theory and Applications 93(2), 273–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Audet, C., Haddad, J., Savard, G.: A note on the definition of a linear bilevel programming solution. Applied Mathematics and Computation 181, 351–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Audet, C., Savard, G., Zghal, W.: New branch and cut algorithm for bilevel linear programming. Journal of Optimization Theory and Applications 134(2), 353–370 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bard, J.F.: An efficient point algorithm for a linear two-stage optimization problem. Operations Research 31(4), 670–684 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bard, J.F.: An investigation of the linear three level programming problem. IEEE Transactions on Systems, Man, and Cybernetics 14(5), 711–717 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bard, J.F.: Practical bilevel optimization. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  11. Bard, J.F., Falk, J.E.: An explicit solution to the multilevel programming problem. Computers and Operations Research 9(1), 77–100 (1982)

    Article  MathSciNet  Google Scholar 

  12. Bard, J.F., Moore, J.T.: A branch and bound algorithm for the bilevel programming problem. SIAM Journal on Scientific and Statistical Computing 11, 281–292 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bard, J.F., Moore, J.T.: An algorithm for the discrete bilevel programming problem. Naval Research Logistics 39(3), 419–435 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baringo, L., Conejo, A.J.: Wind power investment within a market environment. Applied Energy 88(9), 3239–3247 (2011a)

    Article  Google Scholar 

  15. Baringo, L., Conejo, A.J.: Transmission and wind power investment. IEEE Transactions on Power Systems (2011b) (accepted)

    Google Scholar 

  16. BenAyed, O.: Bilevel linear programming. Computers and Operations Research 20(5), 485–501 (1993)

    Article  MathSciNet  Google Scholar 

  17. BenAyed, O., Blair, C.E.: Computational difficulties of bilevel linear programming. Operations Research 38(3), 556–560 (1990)

    Article  MathSciNet  Google Scholar 

  18. BenAyed, O., Boyce, D.E., Blair, C.E.: A general bilevel linear programming formulation of the network design problem. Transportation Research - Part B 22B(4), 311–318 (1988)

    Article  MathSciNet  Google Scholar 

  19. BenAyed, O., Blair, C.E., Boyce, D.E., LeBlanc, L.J.: Construction of a real-world bilevel linear programming model of the highway network design problem. Annals of Operations Research 34, 219–254 (1992)

    Article  MathSciNet  Google Scholar 

  20. Bialas, W.F., Karwan, M.H.: Multilevel linear programming. Research Report No. 78-1, Operation Research Program, Department of Industrial Engineering, State University of New York at Buffalo (1978)

    Google Scholar 

  21. Bialas, W.F., Karwan, M.H.: On two-level optimization. IEEE Transactions on Automatic Control 27(1), 211–214 (1982)

    Article  MATH  Google Scholar 

  22. Bialas, W.F., Karwan, M.H.: Two-level linear programming. Management Science 30(8), 1004–1020 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bracken, J., McGill, J.T.: Defense applications of mathematical programs with optimization problems in the constraints. Operations Research 22(5), 1086–1096 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brown, G., Carlyle, M., Salmerón, J., Wood, K.: Defending critical infrastructure. Interfaces 36, 530–544 (2006)

    Article  Google Scholar 

  25. Burton, R.M., Obel, B.: The multilevel approach to organizational issues of the firm - A critical review. OMEGA The International Journal of Management Science 5(4), 395–414 (1977)

    Article  Google Scholar 

  26. Campelo, M., Scheimberg, S.: A note on a modified simplex approach for solving bilevel linear programming problems. European Journal of Operations Research 126(2), 454–458 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Campelo, M., Dantas, S., Scheimberg, S.: A note on a penalty function approach for solving bilevel linear programs. Journal of Global Optimization 16, 245–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Candler, W.: A linear bilevel programming algorithm: A comment. Computers and Operations Research 15(3), 297–298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Candler, W., Norton, R.: Multi-level programming and development policy. World Bank, Bank Staff Working Paper No. 258 (1977)

    Google Scholar 

  30. Candler, W., Townsley, R.: A linear two-level programming problem. Computers and Operations Research 9, 59–76 (1982)

    Article  MathSciNet  Google Scholar 

  31. Cao, D., Chen, M.: Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach. European Journal of Operational Research 169, 97–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cassidy, R.G., Kirby, M.J.L., Raike, W.M.: Efficient distribution of resources through three levels of government. Management Science 17(8), 462–473 (1971)

    Article  Google Scholar 

  33. Chinchuluun, A., Pardalos, P.M., Huang, H.-X.: Multilevel (hierarchical) optimization: Complexity issues, optimality conditions, algorithms. In: Advances in Applied Mathematics and Global Optimization -Advances in Mechanics and Mathematics, vol. 17, ch. 6, pp. 197–221 (2009)

    Google Scholar 

  34. Clark, P.A., Westerberg, A.W.: Optimization for design problems having more than one objective. Computers and Chemical Engineering 7(4), 259–278 (1983)

    Article  Google Scholar 

  35. Clark, P.A., Westerberg, A.W.: Bilevel programming for steady state chemical process design - I. Fundamentals and algorithms. Computers and Chemical Engineering 14(1), 87–97 (1990)

    Article  Google Scholar 

  36. Colson, B., Marcotte, P., Savard, G.: Bilevel programming: A survey. 4OR 3, 87–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals of Operations Research 153, 235–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Constantin, I., Florian, M.: Optimizing frequencies in a transit network: A non-linear bilevel programming approach. International Transactions in Operational Research 2(2), 149–164 (1995)

    Article  MATH  Google Scholar 

  39. Cote, J.-P., Marcotte, P., Savard, G.: A bilevel modelling approach to pricing and fare optimisation in the airline industry. Journal of Revenue and Pricing Management 2(1), 23–36 (2003)

    Article  Google Scholar 

  40. Dempe, S.: A simple algorithm for the linear bilevel programming problem. Optimization 18(3), 373–385 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dempe, S.: Foundations of bilevel programming. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  42. Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52(3), 333–359 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dempe, S.: Bilevel programming. In: Audet, C., Hansen, P., Savard, G. (eds.) Essays and Surveys in Global Optimization, ch. 6, pp. 165–194 (2005)

    Google Scholar 

  44. DeNegre, S.T., Ralphs, T.K.: A branch and cut algorithm for integer bilevel linear programs. Operations research and cyber-infrastructure, Operations Research/Computer Science Interfaces Series 47(2), Part 1, 65–78 (2009)

    Google Scholar 

  45. Erkut, E., Gzara, F.: Solving the hazmat transport network design problem. Computers and Operations Research 35, 2234–2247 (2008)

    Article  MATH  Google Scholar 

  46. Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Management Science 15, 550–569 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  47. Fortuny-Amat, J., McCarl, B.: A representation and economic interpretation of a two-level programming problem. Journal of the Operational Research Society 32(9), 783–792 (1981)

    MathSciNet  MATH  Google Scholar 

  48. Garcés, L.P., Conejo, A.J., García-Bertrand, R., Romero, R.: A bi-level approach to transmission expansion planning within a market environment. IEEE Transactions on Power Systems 24(3), 1513–1522 (2009)

    Article  Google Scholar 

  49. Glackin, J., Ecker, J.G., Kupferschmid, M.: Solving bilevel linear programs using multiple objective linear programming. Journal of Optimization Theory and Applications 140(2), 197–212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Golias, M.M., Saharidis, G.K.D., Boile, M., Theofanis, S.: Scheduling of inbound trucks at a cross-docking facility: Bi-objective vs bi-level modeling approaches. International Journal of Information Systems and Supply Chain Management 5(1) (2012) (in press)

    Google Scholar 

  51. Hansen, P., Jaumard, B., Savard, G.: New branch and bound rules for linear bilevel programming. SIAM Journal on Scientific and Statistical Computing 13(5), 1194–1217 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. Haurie, A., Savard, G., White, D.J.: A note on: An efficient point algorithm for a linear two-stage optimization problem. Operations Research 38(3), 553–555 (1990)

    Article  MATH  Google Scholar 

  53. Hobbs, B.F., Nelson, S.K.: A nonlinear bilevel model for analysis of electric utility demand-side planning issues. Annals of Operations Research 34, 255–274 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. Júdice, J.J., Faustino, A.M.: The solution of the linear bilevel programming problem by using the linear complementarity problem. Investigavio Operacional 8, 77–95 (1988)

    Google Scholar 

  55. Júdice, J.J., Faustino, A.M.: A sequential LCP method for bilevel linear programming. Annals of Operations Research 34(1), 89–106 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kazempour, J., Conejo, A.J., Ruiz, C.: Strategic generation investment using a complementarity approach. IEEE Transactions on Power Systems 26(2), 940–948 (2011)

    Article  Google Scholar 

  57. Koppe, M., Queyranne, M., Ryan, C.T.: Parametric integer programming algorithm for bilevel mixed integer programs. Journal of Optimization Theory and Applications 146(1), 137–150 (2010)

    Article  MathSciNet  Google Scholar 

  58. Labbe, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Management Science 44(12), 1608–1622 (1998)

    Article  MATH  Google Scholar 

  59. LeBlanc, L.J., Boyce, D.E.: A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows. Transportation Research - Part B 20B(3), 259–265 (1986)

    Article  MathSciNet  Google Scholar 

  60. Liu, Y.H., Spencer, T.H.: Solving a bilevel linear program when the inner decision maker controls few variables. European Journal of Operational Research 81(3), 644–651 (1995)

    Article  MATH  Google Scholar 

  61. Loridan, P., Morgan, J.: Weak via strong stackelberg problem: New results. Journal of Global Optimization 8, 263–287 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  62. Maher, M.J., Zhang, X., Vliet, D.V.: A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows. Transportation Research - Part B 35, 23–40 (2001)

    Article  Google Scholar 

  63. Marinakis, Y., Migdalas, A., Pardalos, P.M.: A new bilevel formulation for the vehicle routing problem and a solution method using a genetic algorithm. Journal of Global Optimization 38, 555–580 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Migdalas, A.: Bilevel programming in traffic planning: Models, methods and challenge. Journal of Global Optimization 7, 381–405 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  65. Mitsos, A., Bollas, G.M., Barton, P.I.: Bilevel optimization formulation for parameter estimation in liquid-liquid phase equilibrium problems. Chemical Engineering Science 64, 548–559 (2009)

    Article  Google Scholar 

  66. Moore, J.T., Bard, J.F.: The mixed integer linear bilevel programming problem. Operations Research 38(5), 911–921 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  67. Motto, A.L., Arroyo, J.M., Galiana, F.D.: A mixed-integer LP procedure for the analysis of electric grid security under disruptive threat. IEEE Transactions on Power Systems 20(3), 1357–1365 (2005)

    Article  Google Scholar 

  68. Nicholls, M.G.: Aluminum production modeling - A nonlinear bilevel programming approach. Operations Research 43(2), 208–218 (1995)

    Article  MATH  Google Scholar 

  69. Onal, H.: A modified simplex approach for solving bilevel linear programming problems. European Journal of Operations Research 67(1), 126–135 (1993)

    Article  Google Scholar 

  70. Onal, H., Darmawan, D.H., Johnson, S.H.: A multilevel analysis of agricultural credit distribution in East Java, Indonesia. Computers and Operations Research 22(2), 227–236 (1995)

    Article  Google Scholar 

  71. Pandzic, H., Conejo, A.J., Kuzle, I., Caro, E.: Yearly maintenance scheduling of transmission lines within a market environment. IEEE Transactions on Power Systems (2011) (in press)

    Google Scholar 

  72. Ruiz, C., Conejo, A.J.: Pool strategy of a producer with endogenous formation of locational marginal prices. IEEE Transactions on Power Systems 24(4), 1855–1866 (2009)

    Article  Google Scholar 

  73. Ryu, J.-H., Dua, V., Pistikopoulos, E.N.: A bilevel programming framework for enterprise-wide process networks under uncertainty. Computers and Chemical Engineering 28, 1121–1129 (2004)

    Article  Google Scholar 

  74. Saharidis, G.K.D., Ierapetritou, M.G.: Resolution method for mixed integer bilevel linear problems based on decomposition technique. Journal of Global Optimization 44(1), 29–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  75. Saharidis, G.K.D., Golias, M.M., Boile, M., Theofanis, S., Ierapetritou, M.G.: The berth scheduling problem with customer differentiation: A new methodological approach based on hierarchical optimization. International Journal of Advanced Manufacturing Technology 46, 377–393 (2010)

    Article  Google Scholar 

  76. Saharidis, G.K.D., Androulakis, I.P., Ierapetritou, M.G.: Model building using bi-level optimization. Journal of Global Optimization 49, 49–67 (2011)

    Article  MATH  Google Scholar 

  77. Salmerón, J., Wood, K., Baldick, R.: Analysis of electric grid security under terrorist threat. IEEE Transactions on Power Systems 19(2), 905–912 (2004)

    Article  Google Scholar 

  78. Salmerón, J., Wood, K., Baldick, R.: Worst-case interdiction analysis of large-scale electric power grids. IEEE Transactions on Power Systems 24, 96–104 (2009)

    Article  Google Scholar 

  79. Shi, C., Zhang, G., Lu, J.: On the definition of linear bilevel programming solution. Applied Mathematics and Computation 160(1), 169–176 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  80. Shi, C., Lu, J., Zhang, G.: An extended Kuhn-Tucker approach for linear bilevel programming. Applied Mathematics and Computation 162, 51–63 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  81. Shi, C., Lu, J., Zhang, G.: An extended Kth best approach for linear bilevel programming. Applied Mathematics and Computation 164, 843–855 (2005c)

    Article  MathSciNet  MATH  Google Scholar 

  82. Shi, C., Lu, J., Zhang, G., Zhou, H.: An extended branch and bound algorithm for linear bilevel programming. Applied Mathematics and Computation 180, 529–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  83. Suh, S., Kim, T.J.: Solving nonlinear bilevel programming models of the equilibrium network design problem: A comparative review. Annals of Operations Research 34, 203–218 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  84. Tuy, H., Migdalas, A., Varbrand, P.: A global optimization approach for the linear two-level program. Journal of Global Optimization 3, 1–23 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  85. Unlu, G.: A linear bilevel programming algorithm based on bicriteria programming. Computers and Operations Research 14(2), 173–179 (1987)

    Article  MathSciNet  Google Scholar 

  86. Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: A bibliography review. Journal of Global Optimization 5(3), 291–306 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  87. Wen, U.P., Hsu, S.T.: A note on a linear bilevel programming algorithm based on bicriteria programming. Computers and Operations Research 16(1), 79–83 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  88. Wen, U.P., Hsu, S.T.: Linear bi-level programming problems - A review. Journal of the Operational Research Society 42(2), 125–133 (1991)

    MATH  Google Scholar 

  89. Wen, U.P., Yang, Y.H.: Algorithms for solving the mixed integer two-level linear programming problem. Computers and Operations Research 17(2), 133–142 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  90. White, D.J.: Solving bi-level linear programmes. Journal of Mathematical Analysis and Applications 200(1), 254–258 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  91. White, D.J., Anandalingam, G.: A penalty function approach for solving bilevel linear programs. Journal of Global Optimization 3(4), 397–419 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  92. Yin, Y.: Multiobjective bilevel optimization for transportation planning and management problems. Journal of Advanced Transportation 36(1), 93–105 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saharidis, G.K.D., Conejo, A.J., Kozanidis, G. (2013). Exact Solution Methodologies for Linear and (Mixed) Integer Bilevel Programming. In: Talbi, EG. (eds) Metaheuristics for Bi-level Optimization. Studies in Computational Intelligence, vol 482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37838-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37838-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37837-9

  • Online ISBN: 978-3-642-37838-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics