Skip to main content

Restriction of Retroviral Infection of Macrophages

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 371))

Abstract

Primate immunodeficiency viruses are highly specialized lentiviruses that have evolved to successfully infect and persist for the lifetime of the host. Despite encountering numerous potent antiviral factors, HIVs and SIVs are successful pathogens due to the acquisition of equally potent countermeasures in the form of accessory genes. The accessory gene Vpx encoded by HIV-2 and a subset of SIVs have a profound effect on the ability of lentiviruses to infect non-dividing cells, such as macrophages. Although most virus replication occurs in activated CD4+ T cells, myeloid lineage cells are natural targets of infection and play a central role in virus transmission, dissemination, and persistence. However, myeloid lineage cells are poorly sensitive to lentiviral infection due partly to the high-level expression of a host protein that regulates nucleic acid metabolism named SAMHD1. Degradation of SAMHD1 is induced by Vpx to eliminate this intrinsic antiviral factor. Importantly, SAMHD1 has also been implicated as a negative regulator of the innate immune response, so the interplay between SAMHD1 and Vpx is likely to have significant consequences for virus replication, persistence, and immune control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Accola MA, Bukovsky AA, Jones MS, Gottlinger HG (1999) A conserved dileucine-containing motif in p6 (gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 73:9992–9999

    PubMed  CAS  Google Scholar 

  • Andersson S, Norrgren H, da Silva Z, Biague A, Bamba S, Kwok S, Christopherson C, Biberfeld G, Albert J (2000) Plasma viral load in HIV-1 and HIV-2 singly and dually infected individuals in Guinea-Bissau, West Africa: significantly lower plasma virus set point in HIV-2 infection than in HIV-1 infection. Arch Intern Med 160:3286–3293

    PubMed  CAS  Google Scholar 

  • Andrew A, Strebel K (2010) HIV-1 Vpu targets cell surface markers CD4 and BST-2 through distinct mechanisms. Mol Aspects Med 31:407–417

    PubMed  CAS  Google Scholar 

  • Aravind L, Koonin EV (1998) The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 23:469–472

    PubMed  CAS  Google Scholar 

  • Ayinde D, Casartelli N, Schwartz O (2012) Restricting HIV the SAMHD1 way: through nucleotide starvation. Nat Rev Microbiol 10:675–680

    PubMed  CAS  Google Scholar 

  • Ayinde D, Maudet C, Transy C, Margottin-Goguet F (2010) Limelight on two HIV/SIV accessory proteins in macrophage infection: is Vpx overshadowing Vpr? Retrovirology 7:35

    PubMed  Google Scholar 

  • Bachand F, Yao XJ, Hrimech M, Rougeau N, Cohen EA (1999) Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor. J Biol Chem 274:9083–9091

    PubMed  CAS  Google Scholar 

  • Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, Panitz S, Flory E, Landau NR, Sertel S, Rutsch F, Lasitschka F, Kim B, Konig R, Fackler OT, Keppler OT (2012) SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 18:1682–1687

    PubMed  CAS  Google Scholar 

  • Balliet JW, Kolson DL, Eiger G, Kim FM, McGann KA, Srinivasan A, Collman R (1994) Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes Vpr, Vpu, and Nef: mutational analysis of a primary HIV-1 isolate. Virology 200:623–631

    PubMed  CAS  Google Scholar 

  • Beer BE, Foley BT, Kuiken CL, Tooze Z, Goeken RM, Brown CR, Hu J, St Claire M, Korber BT, Hirsch VM (2001) Characterization of novel simian immunodeficiency viruses from red-capped mangabeys from Nigeria (SIVrcmNG409 and -NG411). J Virol 75:12014–12027

    PubMed  CAS  Google Scholar 

  • Belshan M, Kimata JT, Brown C, Cheng X, McCulley A, Larsen A, Thippeshappa R, Hodara V, Giavedoni L, Hirsch V, Ratner L (2012) Vpx is critical for SIVmne infection of pigtail macaques. Retrovirology 9:32

    PubMed  CAS  Google Scholar 

  • Belshan M, Mahnke LA, Ratner L (2006) Conserved amino acids of the human immunodeficiency virus type 2 Vpx nuclear localization signal are critical for nuclear targeting of the viral preintegration complex in non-dividing cells. Virology 346:118–126

    PubMed  CAS  Google Scholar 

  • Belshan M, Ratner L (2003) Identification of the nuclear localization signal of human immunodeficiency virus type 2 Vpx. Virology 311:7–15

    PubMed  CAS  Google Scholar 

  • Belzile JP, Duisit G, Rougeau N, Mercier J, Finzi A, Cohen EA (2007) HIV-1 Vpr-mediated G2 arrest involves the DDB1-CUL4AVPRBP E3 ubiquitin ligase. PLoS Pathog 3:e85

    PubMed  Google Scholar 

  • Bergamaschi A, Ayinde D, David A, Le Rouzic E, Morel M, Collin G, Descamps D, Damond F, Brun-Vezinet F, Nisole S, Margottin-Goguet F, Pancino G, Transy C (2009) The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1 DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J Virol 83:4854–4860

    PubMed  CAS  Google Scholar 

  • Bergamaschi A, Pancino G (2010) Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 7:31

    PubMed  Google Scholar 

  • Berger A, Sommer AF, Zwarg J, Hamdorf M, Welzel K, Esly N, Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LC, Fernandez-Sesma A, Rutsch F, Simon V, Konig R, Flory E (2011) SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutieres syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 7:e1002425

    PubMed  CAS  Google Scholar 

  • Berger G, Turpin J, Cordeil S, Tartour K, Nguyen XN, Mahieux R, Cimarelli A (2012) Functional analysis of the relationship between Vpx and the restriction factor SAMHD1. J Biol Chem 287:41210–41217

    PubMed  CAS  Google Scholar 

  • Bieniasz PD (2004) Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5:1109–1115

    PubMed  CAS  Google Scholar 

  • Bjursell G, Skoog L (1980) Control of nucleotide pools in mammalian cells. Antibiot Chemother 28:78–85

    PubMed  CAS  Google Scholar 

  • Brandariz-Nunez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M, Brojatsch J, Diaz-Griffero F (2012) Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology 9:49

    PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365:666–669

    PubMed  CAS  Google Scholar 

  • Cheng X, Belshan M, Ratner L (2008) Hsp40 facilitates nuclear import of the human immunodeficiency virus type 2 Vpx-mediated preintegration complex. J Virol 82:1229–1237

    PubMed  CAS  Google Scholar 

  • Cohen EA, Terwilliger EF, Jalinoos Y, Proulx J, Sodroski JG, Haseltine WA (1990) Identification of HIV-1 Vpr product and function. J Acquir Immune Defic Syndr 3:11–18

    PubMed  CAS  Google Scholar 

  • Crow YJ, Rehwinkel J (2009) Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet 18:R130–R136

    PubMed  CAS  Google Scholar 

  • de Silva TI, Cotten M, Rowland-Jones SL (2008) HIV-2: the forgotten AIDS virus. Trends Microbiol 16:588–595

    PubMed  Google Scholar 

  • DeHart JL, Zimmerman ES, Ardon O, Monteiro-Filho CM, Arganaraz ER, Planelles V (2007) HIV-1 Vpr activates the G2 checkpoint through manipulation of the ubiquitin proteasome system. Virol J 4:57

    PubMed  Google Scholar 

  • Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette N, Benkirane M (2012) SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9:87

    PubMed  CAS  Google Scholar 

  • Diamond TL, Roshal M, Jamburuthugoda VK, Reynolds HM, Merriam AR, Lee KY, Balakrishnan M, Bambara RA, Planelles V, Dewhurst S, Kim B (2004) Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J Biol Chem 279:51545–51553

    PubMed  CAS  Google Scholar 

  • Dube M, Bego MG, Paquay C, Cohen EA (2010) Modulation of HIV-1-host interaction: role of the Vpu accessory protein. Retrovirology 7:114

    PubMed  CAS  Google Scholar 

  • Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, Lewin SR, Gorry PR, Jaworowski A, Greene WC, Sonza S, Crowe SM (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol 178:6581–6589

    PubMed  CAS  Google Scholar 

  • Fassati A (2006) HIV infection of non-dividing cells: a divisive problem. Retrovirology 3:74

    PubMed  Google Scholar 

  • Fletcher TM 3rd, Brichacek B, Sharova N, Newman MA, Stivahtis G, Sharp PM, Emerman M, Hahn BH, Stevenson M (1996) Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J 15:6155–6165

    PubMed  CAS  Google Scholar 

  • Fonteneau JF, Larsson M, Beignon AS, McKenna K, Dasilva I, Amara A, Liu YJ, Lifson JD, Littman DR, Bhardwaj N (2004) Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol 78:5223–5232

    PubMed  CAS  Google Scholar 

  • Fouchier RA, Meyer BE, Simon JH, Fischer U, Malim MH (1997) HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for gag processing but not for post-entry nuclear import. EMBO J 16:4531–4539

    PubMed  CAS  Google Scholar 

  • Fujita M, Nomaguchi M, Adachi A, Otsuka M (2012) SAMHD1-dependent and -independent functions of HIV-2/SIV Vpx protein. Front Microbiol 3:297

    PubMed  Google Scholar 

  • Fujita M, Otsuka M, Miyoshi M, Khamsri B, Nomaguchi M, Adachi A (2008) Vpx is critical for reverse transcription of the human immunodeficiency virus type 2 genome in macrophages. J Virol 82:7752–7756

    PubMed  CAS  Google Scholar 

  • Gao WY, Cara A, Gallo RC, Lori F (1993) Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc Nat Acad Sci USA 90:8925–8928

    PubMed  CAS  Google Scholar 

  • Genovesio A, Kwon YJ, Windisch MP, Kim NY, Choi SY, Kim HC, Jung S, Mammano F, Perrin V, Boese AS, Casartelli N, Schwartz O, Nehrbass U, Emans N (2011) Automated genome-wide visual profiling of cellular proteins involved in HIV infection. J Biomol Screen 16:945–958

    PubMed  CAS  Google Scholar 

  • Gibbs JS, Lackner AA, Lang SM, Simon MA, Sehgal PK, Daniel MD, Desrosiers RC (1995) Progression to AIDS in the absence of a gene for Vpr or Vpx. J Virol 69:2378–2383

    PubMed  CAS  Google Scholar 

  • Gillick K, Pollpeter D, Phalora P, Kim EY, Wolinsky SM, Malim MH (2013) Suppression of HIV-1 Infection by APOBEC3 proteins in primary human CD4(+) T Cells is associated with inhibition of processive reverse transcription as well as excessive cytidine deamination. J Virol 87:1508–1517

    PubMed  CAS  Google Scholar 

  • Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8:594–606

    PubMed  CAS  Google Scholar 

  • Goh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN, Nowak MA, Hahn BH, Emerman M (1998) HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med 4:65–71

    PubMed  CAS  Google Scholar 

  • Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480:379–382

    PubMed  CAS  Google Scholar 

  • Goujon C, Riviere L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A (2007) SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4:2

    PubMed  Google Scholar 

  • Gramberg T, Sunseri N, Landau NR (2010) Evidence for an activation domain at the amino terminus of simian immunodeficiency virus Vpx. J Virol 84:1387–1396

    PubMed  CAS  Google Scholar 

  • Gustin JK, Moses AV, Fruh K, Douglas JL (2011) Viral takeover of the host ubiquitin system. Front Microbiol 2:161

    PubMed  Google Scholar 

  • Harris RS, Hultquist JF, Evans DT (2012) The restriction factors of human immunodeficiency virus. J Biol Chem 287:40875–40883

    PubMed  CAS  Google Scholar 

  • Heinzinger NK, Bukinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315

    PubMed  CAS  Google Scholar 

  • Henderson LE, Sowder RC, Copeland TD, Benveniste RE, Oroszlan S (1988) Isolation and characterization of a novel protein (X-ORF product) from SIV and HIV-2. Science 241:199–201

    PubMed  CAS  Google Scholar 

  • Hiller B, Achleitner M, Glage S, Naumann R, Behrendt R, Roers A (2012) Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J Exp Med 209:1419–1426

    PubMed  CAS  Google Scholar 

  • Hirsch VM, Sharkey ME, Brown CR, Brichacek B, Goldstein S, Wakefield J, Byrum R, Elkins WR, Hahn BH, Lifson JD, Stevenson M (1998) Vpx is required for dissemination and pathogenesis of SIV(SM) PBj: evidence of macrophage-dependent viral amplification. Nat Med 4:1401–1408

    PubMed  CAS  Google Scholar 

  • Hofer A, Crona M, Logan DT, Sjoberg BM (2012) DNA building blocks: keeping control of manufacture. Crit Rev Biochem Mol Biol 47:50–63

    PubMed  CAS  Google Scholar 

  • Hofmann H, Logue EC, Bloch N, Daddacha W, Polsky SB, Schultz ML, Kim B, Landau NR (2012) The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J Virol 86:12552–12560

    PubMed  CAS  Google Scholar 

  • Hrecka K, Gierszewska M, Srivastava S, Kozaczkiewicz L, Swanson SK, Florens L, Washburn MP, Skowronski J (2007) Lentiviral Vpr usurps CUL4-DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle. Proc Natl Acad Sci USA 104:11778–11783

    PubMed  CAS  Google Scholar 

  • Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474:658–661

    PubMed  CAS  Google Scholar 

  • Hu J, Switzer WM, Foley BT, Robertson DL, Goeken RM, Korber BT, Hirsch VM, Beer BE (2003) Characterization and comparison of recombinant simian immunodeficiency virus from drill (Mandrillus leucophaeus) and mandrill (Mandrillus sphinx) isolates. J Virol 77:4867–4880

    PubMed  CAS  Google Scholar 

  • Kappes JC, Morrow CD, Lee SW, Jameson BA, Kent SB, Hood LE, Shaw GM, Hahn BH (1988) Identification of a novel retroviral gene unique to human immunodeficiency virus type 2 and simian immunodeficiency virus SIVMAC. J Virol 62:3501–3505

    PubMed  CAS  Google Scholar 

  • Kaushik R, Zhu X, Stranska R, Wu Y, Stevenson M (2009) A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection. Cell Host Microbe 6:68–80

    PubMed  CAS  Google Scholar 

  • Kewalramani VN, Emerman M (1996) Vpx association with mature core structures of HIV-2. Virology 218:159–168

    PubMed  CAS  Google Scholar 

  • Kim B, Nguyen LA, Daddacha W, Hollenbaugh JA (2012) Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J Biol Chem 287:21570–21574

    PubMed  CAS  Google Scholar 

  • Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657

    PubMed  CAS  Google Scholar 

  • Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13:223–228

    PubMed  CAS  Google Scholar 

  • Li N, Zhang W, Cao X (2000) Identification of human homologue of mouse IFN-gamma induced protein from human dendritic cells. Immunol Lett 74:221–224

    PubMed  CAS  Google Scholar 

  • Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR (2010) A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467:214–217

    PubMed  CAS  Google Scholar 

  • Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, Traore I, Hsieh CC, Dia MC, Gueye EH et al (1994) Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265:1587–1590

    PubMed  CAS  Google Scholar 

  • Mathews CK (2006) DNA precursor metabolism and genomic stability. FASEB J Official Publ Fed Am Soc Exp Biol 20:1300–1314

    CAS  Google Scholar 

  • Mehle A, Goncalves J, Santa-Marta M, McPike M, Gabuzda D (2004) Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev 18:2861–2866

    PubMed  CAS  Google Scholar 

  • Negri DR, Rossi A, Blasi M, Michelini Z, Leone P, Chiantore MV, Baroncelli S, Perretta G, Cimarelli A, Klotman ME, Cara A (2012) Simian immunodeficiency virus-Vpx for improving integrase defective lentiviral vector-based vaccines. Retrovirology 9:69

    PubMed  CAS  Google Scholar 

  • Neil S, Martin F, Ikeda Y, Collins M (2001) Post entry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol 75:5448–5456

    PubMed  CAS  Google Scholar 

  • Niida H, Shimada M, Murakami H, Nakanishi M (2010) Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells. Cancer Sci 101:2505–2509

    PubMed  CAS  Google Scholar 

  • O’Brien WA, Namazi A, Kalhor H, Mao SH, Zack JA, Chen IS (1994) Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors. J Virol 68:1258–1263

    PubMed  Google Scholar 

  • Pancio HA, Ratner L (1998) Human immunodeficiency virus type 2 Vpx-gag interaction. J Virol 72:5271–5275

    PubMed  CAS  Google Scholar 

  • Pancio HA, Vander Heyden N, Ratner L (2000) The C-terminal proline-rich tail of human immunodeficiency virus type 2 Vpx is necessary for nuclear localization of the viral preintegration complex in nondividing cells. J Virol 74:6162–6167

    PubMed  CAS  Google Scholar 

  • Peng G, Greenwell-Wild T, Nares S, Jin W, Lei KJ, Rangel ZG, Munson PJ, Wahl SM (2007) Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110:393–400

    PubMed  CAS  Google Scholar 

  • Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, Siliciano RF (2002) Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J Virol 76:8518–8531

    PubMed  CAS  Google Scholar 

  • Pion M, Granelli-Piperno A, Mangeat B, Stalder R, Correa R, Steinman RM, Piguet V (2006) APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection. J Exp Med 203:2887–2893

    PubMed  CAS  Google Scholar 

  • Planelles V, Benichou S (2009) Vpr and its interactions with cellular proteins. Curr Top Microbiol Immunol 339:177–200

    PubMed  CAS  Google Scholar 

  • Planelles V, Jowett JB, Li QX, Xie Y, Hahn B, Chen IS (1996) Vpr-induced cell cycle arrest is conserved among primate lentiviruses. J Virol 70:2516–2524

    PubMed  CAS  Google Scholar 

  • Plesa G, Dai J, Baytop C, Riley JL, June CH, O’Doherty U (2007) Addition of deoxynucleosides enhances human immunodeficiency virus type 1 integration and 2LTR formation in resting CD4(+) T cells. J Virol 81:13938–13942

    PubMed  CAS  Google Scholar 

  • Popov S, Rexach M, Zybarth G, Reiling N, Lee MA, Ratner L, Lane CM, Moore MS, Blobel G, Bukrinsky M (1998) Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. EMBO J 17:909–917

    PubMed  CAS  Google Scholar 

  • Powell RD, Holland PJ, Hollis T, Perrino FW (2011) Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 286:43596–43600

    PubMed  CAS  Google Scholar 

  • Qiao F, Bowie JU (2005) The many faces of SAM. Sci Sig Transduct knowl Environ: re7

    Google Scholar 

  • Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BC, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832

    PubMed  CAS  Google Scholar 

  • Rich EA, Chen IS, Zack JA, Leonard ML, O’Brien WA (1992) Increased susceptibility of differentiated mononuclear phagocytes to productive infection with human immunodeficiency virus-1 (HIV-1). J Clin Investig 89:176–183

    PubMed  CAS  Google Scholar 

  • Schrofelbauer B, Hakata Y, Landau NR (2007) HIV-1 Vpr function is mediated by interaction with the damage-specific DNA-binding protein DDB1. Proc Nat Acad Sci USA 104:4130–4135

    PubMed  Google Scholar 

  • Schule S, Kloke BP, Kaiser JK, Heidmeier S, Panitz S, Wolfrum N, Cichutek K, Schweizer M (2009) Restriction of HIV-1 replication in monocytes is abolished by Vpx of SIVsmmPBj. PLoS ONE 4:e7098

    PubMed  Google Scholar 

  • Sharova N, Wu Y, Zhu X, Stranska R, Kaushik R, Sharkey M, Stevenson M (2008) Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction. PLoS Pathog 4:e1000057

    PubMed  Google Scholar 

  • Sharp PM, Bailes E, Stevenson M, Emerman M, Hahn BH (1996) Gene acquisition in HIV and SIV. Nature 383:586–587

    PubMed  CAS  Google Scholar 

  • Sonza S, Maerz A, Deacon N, Meanger J, Mills J, Crowe S (1996) Human immunodeficiency virus type 1 replication is blocked prior to reverse transcription and integration in freshly isolated peripheral blood monocytes. J Virol 70:3863–3869

    PubMed  CAS  Google Scholar 

  • Srivastava S, Swanson SK, Manel N, Florens L, Washburn MP, Skowronski J (2008) Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog 4:e1000059

    PubMed  Google Scholar 

  • St Gelais C, de Silva S, Amie SM, Coleman CM, Hoy H, Hollenbaugh JA, Kim B, Wu L (2012) SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4(+) T-lymphocytes cannot be upregulated by interferons. Retrovirology 9:105

    PubMed  CAS  Google Scholar 

  • Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–598

    PubMed  CAS  Google Scholar 

  • Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA (1990) HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9:1551–1560

    PubMed  CAS  Google Scholar 

  • Swiggard WJ, O’Doherty U, McGain D, Jeyakumar D, Malim MH (2004) Long HIV type 1 reverse transcripts can accumulate stably within resting CD4(+) T cells while short ones are degraded. AIDS Res Hum Retroviruses 20:285–295

    PubMed  CAS  Google Scholar 

  • Triques K, Stevenson M (2004) Characterization of restrictions to human immunodeficiency virus type 1 infection of monocytes. J Virol 78:5523–5527

    PubMed  CAS  Google Scholar 

  • Tristem M, Purvis A, Quicke DL (1998) Complex evolutionary history of primate lentiviral Vpr genes. Virology 240:232–237

    PubMed  CAS  Google Scholar 

  • van der Loeff MF, Larke N, Kaye S, Berry N, Ariyoshi K, Alabi A, van Tienen C, Leligdowicz A, Sarge-Njie R, da Silva Z, Jaye A, Ricard D, Vincent T, Jones SR, Aaby P, Jaffar S, Whittle H (2010) Undetectable plasma viral load predicts normal survival in HIV-2-infected people in a West African village. Retrovirology 7:46

    PubMed  Google Scholar 

  • von Schwedler U, Kornbluth RS, Trono D (1994) The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Nat Acad Sci USA 91:6992–6996

    Google Scholar 

  • Wu X, Conway JA, Kim J, Kappes JC (1994) Localization of the Vpx packaging signal within the C terminus of the human immunodeficiency virus type 2 gag precursor protein. J Virol 68:6161–6169

    PubMed  CAS  Google Scholar 

  • Yamashita M, Emerman M (2005) The cell cycle independence of HIV infections is not determined by known karyophilic viral elements. PLoS Pathog 1:e18

    PubMed  Google Scholar 

  • Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11:1005–1013

    PubMed  CAS  Google Scholar 

  • Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302:1056–1060

    PubMed  CAS  Google Scholar 

  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61:213–222

    PubMed  CAS  Google Scholar 

  • Zhang C, de Silva S, Wang JH, Wu L (2012) Co-evolution of primate SAMHD1 and lentivirus Vpx leads to the loss of the Vpx gene in HIV-1 ancestor. PLoS One 7:e37477

    PubMed  CAS  Google Scholar 

  • Zhang S, Feng Y, Narayan O, Zhao LJ (2001) Cytoplasmic retention of HIV-1 regulatory protein Vpr by protein-protein interaction with a novel human cytoplasmic protein VprBP. Gene 263:131–140

    PubMed  CAS  Google Scholar 

  • Zimmerman MD, Proudfoot M, Yakunin A, Minor W (2008) Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: the 5′-deoxyribonucleotidase YfbR from Escherichia coli. J Mol Biol 378:215–226

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Sharkey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharkey, M. (2013). Restriction of Retroviral Infection of Macrophages. In: Cullen, B. (eds) Intrinsic Immunity. Current Topics in Microbiology and Immunology, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37765-5_4

Download citation

Publish with us

Policies and ethics