Skip to main content

Anesthesia

  • Chapter
  • First Online:
Neuroimaging of Consciousness

Abstract

This chapter describes current knowledge about functional brain modifications observed during anesthesia-induced alterations of consciousness and places it into the context of consciousness physiology and anesthesia mechanisms. Anesthesia is a unique research tool for studying consciousness, insofar as it allows differentially and reversibly altering several of its constituents. Recent evidence suggests that anesthesia produces unconsciousness through a breakdown of connectivity into brain networks that are known to play a role in the emergence of mental content. These findings are in line with, and corroborate to some extent, current theories of conscious perception. Although anesthetic agents have effects on neural pathways controlling sleep and arousal, accumulating elements suggest that unconsciousness during general anesthesia occurs through mechanisms that are different from those of physiological sleep. Additional scientific exploration is still needed to understand the link between known biochemical targets of anesthetic agents, their effect on sleep-arousal systems, and the observed effects on consciousness networks. There is also a need for ­precising the exact sequence of events during transitions across consciousness states, for each type of anesthetic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOLD:

Blood oxygen level dependent

DMN:

Default mode network

ECN:

Executive control network

EEG:

Electroencephalogram

fMRI:

Functional magnetic resonance imaging

Glycine R:

Glycine receptor

HCN channels:

Hyperpolarization-activated cation channels

HDEEG:

High-density electroencephalography

m ACh R:

Muscarinic acetylcholine receptor

n ACh R:

Nicotinic acetylcholine receptor

N2O:

Nitrous oxide

Na channels:

Presynaptic voltage-gated sodium channels

NIRS:

Near-infrared spectroscopy

n-REM:

Non-rapid eye movement

PET:

Positron emission tomography

REM:

Rapid eye movement

TMS:

Transcranial magnetic stimulation

VLPO:

Ventrolateral preoptic nucleus

References

  • Alkire MT (1998) Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology 89:323–333

    Article  PubMed  CAS  Google Scholar 

  • Alkire MT, Haier RJ, Barker SJ et al (1995) Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82:393–403

    Article  PubMed  CAS  Google Scholar 

  • Alkire MT, Haier RJ, Shah NK et al (1997) Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 86:549–557

    Article  PubMed  CAS  Google Scholar 

  • Alkire MT, Haier RJ, Fallon JH (2000) Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn 9:370–386

    Article  PubMed  CAS  Google Scholar 

  • Alkire MT, Gruver R, Miller J et al (2008a) Neuroimaging analysis of an anesthetic gas that blocks human emotional memory. Proc Natl Acad Sci U S A 105:1722–1727

    Article  PubMed  Google Scholar 

  • Alkire MT, Hudetz AG, Tononi G (2008b) Consciousness and anesthesia. Science 322:876–880

    Article  PubMed  CAS  Google Scholar 

  • Baars BJ, Ramsoy TZ, Laureys S (2003) Brain, conscious experience and the observing self. Trends Neurosci 26:671–675

    Article  PubMed  CAS  Google Scholar 

  • Barrett AB, Murphy M, Bruno MA et al (2012) Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS One 7:e29072

    Article  PubMed  CAS  Google Scholar 

  • Bennett C, Voss LJ, Barnard JP et al (2009) Practical use of the raw electroencephalogram waveform during general anesthesia: the art and science. Anesth Analg 109:539–550

    Article  PubMed  Google Scholar 

  • Boly M, Moran R, Murphy M et al (2012) Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci 32:7082–7090

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme V, Fiset P, Meuret P et al (2001) Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J Neurophysiol 85:1299–1308

    PubMed  CAS  Google Scholar 

  • Bonhomme V, Maquet P, Phillips C et al (2008) The effect of clonidine infusion on distribution of regional cerebral blood flow in volunteers. Anesth Analg 106:899–909

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme V, Boveroux P, Hans P et al (2011a) Influence of anesthesia on cerebral blood flow, cerebral metabolic rate, and brain functional connectivity. Curr Opin Anaesthesiol 24:474–479

    Article  PubMed  Google Scholar 

  • Bonhomme V, Boveroux P, Vanhaudenhuyse A et al (2011b) Linking sleep and general anesthesia mechanisms: this is no walkover. Acta Anaesthesiol Belg 62:161–171

    Article  PubMed  CAS  Google Scholar 

  • Boveroux P, Bonhomme V, Boly M et al (2008) Brain function in physiologically, pharmacologically, and pathologically altered states of consciousness. Int Anesthesiol Clin 46:131–146

    Article  PubMed  Google Scholar 

  • Boveroux P, Vanhaudenhuyse A, Bruno MA et al (2010) Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038–1053

    Article  PubMed  CAS  Google Scholar 

  • Cavanna AE (2007) The precuneus and consciousness. CNS Spectr 12:545–552

    PubMed  Google Scholar 

  • Changeux JP (2012) Conscious processing: implications for general anesthesia. Curr Opin Anaesthesiol 25:397–404

    Article  PubMed  Google Scholar 

  • Chemali JJ, Van Dort CJ, Brown EN et al (2012) Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology 116:998–1005

    Article  PubMed  CAS  Google Scholar 

  • Cold GE, Eskesen V, Eriksen H et al (1986) Changes in CMRO2, EEG and concentration of etomidate in serum and brain tissue during craniotomy with continuous etomidate supplemented with N2O and fentanyl. Acta Anaesthesiol Scand 30:159–163

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Buchel C, Friston KJ et al (1999) Noradrenergically mediated plasticity in a human attentional neuronal network. Neuroimage 10:705–715

    Article  PubMed  CAS  Google Scholar 

  • Dueck MH, Petzke F, Gerbershagen HJ et al (2005) Propofol attenuates responses of the auditory cortex to acoustic stimulation in a dose-dependent manner: a FMRI study. Acta Anaesthesiol Scand 49:784–791

    Article  PubMed  CAS  Google Scholar 

  • Eger EI, Sonner JM (2006) Anaesthesia defined (gentlemen, this is no humbug). Best Pract Res Clin Anaesthesiol 20:23–29

    Article  PubMed  Google Scholar 

  • Ferrarelli F, Massimini M, Sarasso S et al (2010) Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci U S A 107:2681–2686

    Article  PubMed  CAS  Google Scholar 

  • Fiset P, Paus T, Daloze T et al (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 19:5506–5513

    PubMed  CAS  Google Scholar 

  • Forster A, Juge O, Morel D (1982) Effects of midazolam on cerebral blood flow in human volunteers. Anesthesiology 56:453–455

    Article  PubMed  CAS  Google Scholar 

  • Franks NP (2006) Molecular targets underlying general anaesthesia. Br J Pharmacol 147(Suppl 1):S72–S81

    PubMed  CAS  Google Scholar 

  • Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Honore E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25:601–608

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Zecharia AY (2011) Sleep and general anesthesia. Can J Anaesth 58:139–148

    Article  PubMed  Google Scholar 

  • Greicius MD, Kiviniemi V, Tervonen O et al (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29:839–847

    Article  PubMed  Google Scholar 

  • Heinke W, Koelsch S (2005) The effects of anesthetics on brain activity and cognitive function. Curr Opin Anaesthesiol 18:625–631

    Article  PubMed  Google Scholar 

  • Hirota K (2006) Special cases: ketamine, nitrous oxide and xenon. Best Pract Res Clin Anaesthesiol 20:69–79

    Article  PubMed  CAS  Google Scholar 

  • John ER, Prichep LS (2005) The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology 102:447–471

    Article  PubMed  Google Scholar 

  • Kaisti KK, Metsahonkala L, Teras M et al (2002) Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 96:1358–1370

    Article  PubMed  CAS  Google Scholar 

  • Kaisti KK, Langsjo JW, Aalto S et al (2003) Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:603–613

    Article  PubMed  CAS  Google Scholar 

  • Kelz MB, Sleigh J (2012) From the edge of oblivion: the dance between intrinsic neuronal currents and neuronal connectivity. Anesthesiology 116:977–979

    Article  PubMed  Google Scholar 

  • Kim SP, Hwang E, Kang JH et al (2012) Changes in the thalamocortical connectivity during anesthesia-induced transitions in consciousness. Neuroreport 23:294–298

    Article  PubMed  Google Scholar 

  • Kopp LA, Yost CS, Kindler CH (2009) Anaesthetic mechanisms: update on the challenge of unravelling the mystery of anaesthesia. Eur J Anaesthesiol 26:807–820

    Article  Google Scholar 

  • Ku SW, Lee U, Noh GJ et al (2011) Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS One 6:e25155

    Article  PubMed  CAS  Google Scholar 

  • Langsjo JW, Kaisti KK, Aalto S et al (2003) Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:614–623

    Article  PubMed  Google Scholar 

  • Langsjo JW, Salmi E, Kaisti KK et al (2004) Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans. Anesthesiology 100:1065–1071

    Article  PubMed  Google Scholar 

  • Langsjo JW, Maksimow A, Salmi E et al (2005) S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology 103:258–268

    Article  PubMed  Google Scholar 

  • Lee U, Muller M, Noh GJ et al (2011) Dissociable network properties of anesthetic state transitions. Anesthesiology 114:872–881

    Article  PubMed  Google Scholar 

  • Leslie K, Sleigh J, Paech MJ et al (2009) Dreaming and electroencephalographic changes during anesthesia maintained with propofol or desflurane. Anesthesiology 111:547–555

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Lauer KK, Ward BD et al (2011) Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory. Hum Brain Mapp 33:2487–2498

    Article  PubMed  Google Scholar 

  • Lu J, Nelson LE, Franks N et al (2008) Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol 508:648–662

    Article  PubMed  Google Scholar 

  • Luo T, Leung LS (2009) Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia. Anesthesiology 111:725–733

    Article  PubMed  CAS  Google Scholar 

  • Luo T, Leung LS (2011) Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia. Anesthesiology 115:36–43

    Article  PubMed  CAS  Google Scholar 

  • Mantz J, Hemmings HC Jr (2011) Sleep and anesthesia: the histamine connection. Anesthesiology 115:8–9

    Article  PubMed  Google Scholar 

  • Martuzzi R, Ramani R, Qiu M et al (2010) Functional connectivity and alterations in baseline brain state in humans. Neuroimage 49:823–834

    Article  PubMed  Google Scholar 

  • Mashour GA (2004) Consciousness unbound: toward a paradigm of general anesthesia. Anesthesiology 100:428–433

    Article  PubMed  Google Scholar 

  • Meuret P, Backman SB, Bonhomme V et al (2000) Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology 93:708–717

    Article  PubMed  CAS  Google Scholar 

  • Meyer HH (1899) Welche Eigenschaft der Anästhetika bedingt ihre narkotische Wirkung? Arch Exp PatholPharmakol(Naunyn-Schmiedebergs) 42:109–118

    Article  Google Scholar 

  • Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R et al (2010) Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci 30:9095–9102

    Article  PubMed  CAS  Google Scholar 

  • Murphy M, Bruno MA, Riedner BA et al (2011) Propofol anesthesia and sleep: a high-density EEG study. Sleep 34:283–91A

    PubMed  Google Scholar 

  • Nelson LE, Guo TZ, Lu J et al (2002) The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 5:979–984

    Article  PubMed  CAS  Google Scholar 

  • Nelson LE, Lu J, Guo T et al (2003) The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98:428–436

    Article  PubMed  CAS  Google Scholar 

  • Newberg LA, Milde JH, Michenfelder JD (1983) The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. Anesthesiology 59:23–28

    Article  PubMed  CAS  Google Scholar 

  • Niesters M, Khalili-Mahani N, Martini C et al (2012) Effect of subanesthetic ketamine on intrinsic functional brain connectivity: a placebo-controlled functional magnetic resonance imaging study in healthy male volunteers. Anesthesiology 117:868–877

    Article  PubMed  CAS  Google Scholar 

  • Overton E (1899) Ueber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung für die Physiologie. Vierteljahresschr Naturforsch Ges Zürich 44:88–135

    Google Scholar 

  • Perouansky M (2012) The quest for a unified model of anesthetic action: a century in Claude Bernard’s shadow. Anesthesiology 117:465–474

    Article  PubMed  Google Scholar 

  • Pierce EC, Lambertsen CJ, Deutsch S et al (1962) Cerebral circulation and metabolism during thiopental anesthesia and hyper-ventilation in man. J Clin Invest 41(1664–71):1664–1671

    Article  PubMed  CAS  Google Scholar 

  • Plourde G, Chartrand D, Fiset P et al (2003) Antagonism of sevoflurane anaesthesia by physostigmine: effects on the auditory steady-state response and bispectral index. Br J Anaesth 91:583–586

    Article  PubMed  CAS  Google Scholar 

  • Ramani R, Qiu M, Constable RT (2007) Sevoflurane 0.25 MAC preferentially affects higher order association areas: a functional magnetic resonance imaging study in volunteers. Anesth Analg 105:648–655

    Article  PubMed  CAS  Google Scholar 

  • Rampil IJ (1997) Electroencephalogram. In ‘Textbook of neuroanesthesia: With Neurosurgical and Neuroscience Perspectives’, The McGraw-Hill Companies, New York, Albin MS Ed., First Edition, Chapter 6, p.193–219

    Google Scholar 

  • Rex S, Schaefer W, Meyer PH et al (2006) Positron emission tomography study of regional cerebral metabolism during general anesthesia with xenon in humans. Anesthesiology 105:936–943

    Article  PubMed  CAS  Google Scholar 

  • Sandberg K, Bibby BM, Timmermans B et al (2011) Measuring consciousness: task accuracy and awareness as sigmoid functions of stimulus duration. Conscious Cogn 20:1659–1675

    Article  PubMed  Google Scholar 

  • Sanders RD, Maze M (2011) Contribution of sedative-hypnotic agents to delirium via modulation of the sleep pathway. Can J Anaesth 58:149–156

    Article  PubMed  Google Scholar 

  • Sanders RD, Tononi G, Laureys S et al (2012) Unresponsiveness not equal unconsciousness. Anesthesiology 116:946–959

    Article  PubMed  Google Scholar 

  • Schrouff J, Perlbarg V, Boly M et al (2011) Brain functional integration decreases during ­propofol-induced loss of consciousness. Neuroimage 57:198–205

    Article  PubMed  CAS  Google Scholar 

  • Solt K, Forman SA (2007) Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr Opin Anaesthesiol 20:300–306

    Article  PubMed  Google Scholar 

  • Stamatakis EA, Adapa RM, Absalom AR et al (2010) Changes in resting neural connectivity during propofol sedation. PLoS One 5:e14224

    Article  PubMed  CAS  Google Scholar 

  • Tonner PH, Bein B (2006) Classic electroencephalographic parameters: median frequency, spectral edge frequency etc. Best Pract Res Clin Anaesthesiol 20:147–159

    Article  PubMed  CAS  Google Scholar 

  • Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42

    Article  PubMed  Google Scholar 

  • Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ et al (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171

    Article  PubMed  Google Scholar 

  • Vanhaudenhuyse A, Demertzi A, Schabus M et al (2011) Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 23:570–578

    Article  PubMed  Google Scholar 

  • Velly LJ, Rey MF, Bruder NJ et al (2007) Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology 107:202–212

    Article  PubMed  CAS  Google Scholar 

  • Veselis RA, Reinsel RA, Beattie BJ et al (1997) Midazolam changes cerebral blood flow in discrete brain regions: an H2(15)O positron emission tomography study. Anesthesiology 87:1106–1117

    Article  PubMed  CAS  Google Scholar 

  • Veselis RA, Feshchenko VA, Reinsel RA et al (2004) Thiopental and propofol affect different regions of the brain at similar pharmacologic effects. Anesth Analg 99:399–408

    PubMed  CAS  Google Scholar 

  • Xie G, Deschamps A, Backman SB et al (2011) Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: a positron emission tomography study. Br J Anaesth 106:548–557

    Article  PubMed  CAS  Google Scholar 

  • Zecharia AY, Franks NP (2009) General anesthesia and ascending arousal pathways. Anesthesiology 111:695–696

    Article  PubMed  Google Scholar 

  • Zecharia AY, Nelson LE, Gent TC et al (2009) The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci 29:2177–2187

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Bonhomme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonhomme, V., Boveroux, P., Brichant, J.F. (2013). Anesthesia. In: Cavanna, A., Nani, A., Blumenfeld, H., Laureys, S. (eds) Neuroimaging of Consciousness. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37580-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37580-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37579-8

  • Online ISBN: 978-3-642-37580-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics