Chapter

Evolution, Complexity and Artificial Life

pp 19-39

Taming the Complexity of Natural and Artificial Evolutionary Dynamics

  • Riccardo PoliAffiliated withSchool of Computer Science and Electronic Engineering, University of Essex Email author 
  • , Christopher R. StephensAffiliated withInstituto de Ciencias Nucleares, UNAM

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The study of complex adaptive systems is among the key modern tasks in science. Such systems show radically different behaviours at different scales and in different environments, and mathematical modelling of such emergent behaviour is very difficult, even at the conceptual level. We require a new methodology to study and understand complex, emergent macroscopic phenomena. Coarse graining, a technique that originated in statistical physics, involves taking a system with many microscopic degrees of freedom and finding an appropriate subset of collective variables that offer a compact, computationally feasible description of the system, in terms of which the dynamics looks “natural”. This paper presents the key ideas of the approach and shows how it can be applied to evolutionary dynamics.