Skip to main content

Spin Effects in Polariton Condensates: From Half-Solitons to Analogues of Wormholes

  • Chapter
Book cover Physics of Quantum Fluids

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 177))

  • 1851 Accesses

Abstract

Cavity exciton-polaritons are the quasiparticles formed of photons and excitons strongly coupled in microcavities. They have recently become a very convenient model system for the Bose-Einstein condensation in 2D and 1D systems as well as various related effects such as superfluidity, vortices or oblique solitons. Polaritons are bosons with only two possible spin projections on the growth axis of the sample which allows a two-component spinor condensate to form. In this chapter we will explain how one can capitalize on the unique properties of a flowing spinor exciton-polariton Bose-Einstein condensate. In the first part we will describe how the controlled generation of new types of half-integer excitations: oblique half-solitons can be achieved. In the second part, we will show that the convenience to create event horizons and thus black hole analogues in the spinor system will lead us to the modeling of wormholes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  2. H. Smith, C.J. Pethick, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  3. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 5221 (1995)

    Google Scholar 

  4. N.N. Bogoliubov, J. Phys. USSR 11, 23 (1947)

    Google Scholar 

  5. J. Leggett, Quantum Liquids (Oxford University Press, Oxford, 2008)

    Google Scholar 

  6. P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Springer, Berlin, 2002)

    Google Scholar 

  7. C.A. Jones, P.H. Roberts, J. Phys. A 15, 2599 (1982)

    Article  ADS  Google Scholar 

  8. G. Theocharis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, Y.S. Kivshar, Phys. Rev. Lett. 90, 120403 (2003)

    Article  ADS  Google Scholar 

  9. G.A. El, A. Gammal, A.M. Kamchatnov, Phys. Rev. Lett. 97, 180405 (2006)

    Article  ADS  Google Scholar 

  10. M. Ueda, Y. Kawaguchi, Preprint (2010). arXiv:1001.2072

  11. M.M. Salomaa, G.E. Volovik, J. Low Temp. Phys. 4, 319 (1988)

    Google Scholar 

  12. G.E. Volovik, V.P. Mineev, JETP Lett. 24, 561 (1976)

    ADS  Google Scholar 

  13. C.M. Savage, J. Ruostekoski, Phys. Rev. Lett. 91, 010403 (2003)

    Article  ADS  Google Scholar 

  14. L.J. Garay, J.R. Anglin, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 85, 4643 (2000)

    Article  ADS  Google Scholar 

  15. O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, J. Steinhauer, Phys. Rev. Lett. 105, 240401 (2010)

    Article  ADS  Google Scholar 

  16. S.W. Hawking, Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  17. A.V. Kavokin, J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  18. J. Kasprzak et al., Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  19. E. Wertz et al., Nat. Phys. 6, 860 (2010)

    Article  Google Scholar 

  20. A. Amo et al., Nature 457, 291 (2009)

    Article  ADS  Google Scholar 

  21. K.G. Lagoudakis, Nat. Phys. 4, 706–710 (2008)

    Article  Google Scholar 

  22. K.G. Lagoudakis et al., Phys. Rev. Lett. 106, 115301 (2011)

    Article  ADS  Google Scholar 

  23. S. Pigeon, I. Carusotto, C. Ciuti, Phys. Rev. 83, 144513 (2011)

    Article  Google Scholar 

  24. A. Amo et al., Science 3, 1167 (2011)

    Article  ADS  Google Scholar 

  25. I.A. Shelykh, A.V. Kavokin, Y.G. Rubo, T.C.H. Liew, G. Malpuech, Semicond. Sci. Technol. 25, 013001 (2010)

    Article  ADS  Google Scholar 

  26. P. Renucci et al., Phys. Rev. B 72, 075317 (2005)

    Article  ADS  Google Scholar 

  27. I.A. Shelykh et al., Phys. Rev. Lett. 97, 066402 (2006)

    Article  ADS  Google Scholar 

  28. Y.G. Rubo, Phys. Rev. Lett. 99, 106401 (2007)

    Article  ADS  Google Scholar 

  29. K.G. Lagoudakis et al., Science 326, 974 (2009)

    Article  ADS  Google Scholar 

  30. H. Flayac, D.D. Solnyshkov, G. Malpuech, Phys. Rev. B 83, 193305 (2011)

    Article  ADS  Google Scholar 

  31. A. Kavokin et al., Phys. Rev. Lett. 95, 136601 (2005)

    Article  ADS  Google Scholar 

  32. C. Leyder et al., Nat. Phys. 3, 628 (2007)

    Article  Google Scholar 

  33. D.D. Solnyshkov, H. Flayac, G. Malpuech, Phys. Rev. B 84, 233405 (2011)

    Article  ADS  Google Scholar 

  34. A. Einstein, N. Rosen, Phys. Rev. 48, 73–77 (1935)

    Article  ADS  Google Scholar 

  35. L.D. Landau, J. Phys. USSR 5, 71 (1941)

    Google Scholar 

  36. A.A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957)

    Google Scholar 

  37. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (1999)

    Article  ADS  Google Scholar 

  38. J. Williams, M. Holland, Nature 401, 568 (1999)

    Article  ADS  Google Scholar 

  39. F.M. Marchetti et al., Phys. Rev. Lett. 105, 063902 (2010)

    Article  ADS  Google Scholar 

  40. G. Tosi et al., Phys. Rev. Lett. 107, 036401 (2011)

    Article  ADS  Google Scholar 

  41. G. Nardin et al., Nat. Phys. 7, 635 (2011)

    Article  Google Scholar 

  42. D. Sanvitto et al., Nat. Photonics 5, 610 (2011)

    Article  ADS  Google Scholar 

  43. A.M. Kamchatnov, L.P. Pitaevskii, Phys. Rev. Lett. 100, 160402 (2008)

    Article  ADS  Google Scholar 

  44. E. Cancellieri et al., Phys. Rev. B 82, 224512 (2010)

    Article  ADS  Google Scholar 

  45. D.D. Solnyshkov, I.A. Shelykh, N.A. Gippius, A.V. Kavokin, G. Malpuech, Phys. Rev. B 77, 045314 (2008)

    Article  ADS  Google Scholar 

  46. A.M. Kamchatnov, S.V. Korneev, Preprint (2011). arXiv:1111.4170v1

  47. A.M. Kamchatnov, S.V. Korneev, Preprint (2011). arXiv:1105.0789v1

  48. T. Frisch, Y. Pomeau, S. Rica, Phys. Rev. Lett. 69, 1644 (1992)

    Article  ADS  Google Scholar 

  49. P. Öhberg et al., Phys. Rev. Lett. 86, 2918 (2000)

    Article  Google Scholar 

  50. P.G. Kevrekidis et al., Eur. Phys. J. D 28, 181 (2004)

    Article  ADS  Google Scholar 

  51. Y.G. Gladush et al., Phys. Rev. A 79, 033623 (2009)

    Article  ADS  Google Scholar 

  52. J.J. Baumberg et al., Phys. Rev. Lett. 101, 136409 (2008)

    Article  ADS  Google Scholar 

  53. H. Flayac, D.D. Solnyshkov, G. Malpuech, I.A. Shelykh, Phys. Rev. B 81, 045318 (2010)

    Article  ADS  Google Scholar 

  54. M. Toledo Solano, Y.G. Rubo, J. Phys. Conf. Ser. 210, 012024 (2010)

    Article  ADS  Google Scholar 

  55. Z. Hadzibabic et al., Nature 441, 1118 (2006)

    Article  ADS  Google Scholar 

  56. A. Amo et al., Phys. Rev. B 82, 081301(R) (2010)

    Article  ADS  Google Scholar 

  57. W. Langbein, I. Shelykh, D. Solnyshkov, G. Malpuech, Yu. Rubo, A. Kavokin, Phys. Rev. B 75, 075323 (2007)

    Article  ADS  Google Scholar 

  58. A. Amo et al., Phys. Rev. B 80, 165325 (2009)

    Article  ADS  Google Scholar 

  59. D.N. Krizhanovskii et al., Phys. Rev. B 73, 073303 (2006)

    Article  ADS  Google Scholar 

  60. D.D. Solnyshkov, H. Flayac, G. Malpuech, Phys. Rev. B 85, 073105 (2012)

    Article  ADS  Google Scholar 

  61. A.F. Young, P. Kim, Nat. Phys. 5, 222 (2009)

    Article  Google Scholar 

  62. K. Muamer, D. Guillaume, T.M. Chang, S. Guenneau, S. Enoch, Preprint (2011). arXiv:1102.0900

  63. H. Chen, R.X. Miao, M. Li, Opt. Express 18, 15183 (2010)

    Article  ADS  Google Scholar 

  64. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Phys. Rev. Lett. 99, 183901 (2007)

    Article  ADS  Google Scholar 

  65. W.G. Unruh, Phys. Rev. Lett. 46, 1351 (1981)

    Article  ADS  Google Scholar 

  66. S. Weinfurtner et al., Phys. Rev. Lett. 106, 021302 (2011)

    Article  ADS  Google Scholar 

  67. M. Visser et al., Artificial Black Holes (World Scientific Publishing, New Jersey, 2002)

    Google Scholar 

  68. J. Macher, R. Parentani, Phys. Rev. A 80, 043601 (2009)

    Article  ADS  Google Scholar 

  69. R. Schutzhold, W.G. Unruh, Phys. Rev. D 78, 041504(R) (2008)

    Article  MathSciNet  ADS  Google Scholar 

  70. G. Dasbach et al., Phys. Rev. B 71, 161308 (2005)

    Article  ADS  Google Scholar 

  71. R. Balbinot et al., Phys. Rev. A 78, 021603(R) (2008)

    Article  ADS  Google Scholar 

  72. I. Carusotto et al., New J. Phys. 10, 103001 (2008)

    Article  ADS  Google Scholar 

  73. K.G. Lagoudakis et al., Nat. Phys. 4, 706 (2008)

    Article  Google Scholar 

  74. E. Wertz et al., Nat. Phys. 6, 860 (2010)

    Article  Google Scholar 

  75. C. Mayoral et al., New J. Phys. 13, 025007 (2011)

    Article  ADS  Google Scholar 

  76. J.A. Wheeler, Geometrodynamics (Academic Press, New York, 1962)

    MATH  Google Scholar 

  77. M.S. Morris, K.S. Thorne, U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988)

    Article  ADS  Google Scholar 

  78. G. Malpuech et al., Appl. Phys. Lett. 88, 111118 (2006)

    Article  ADS  Google Scholar 

  79. G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Malpuech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flayac, H., Solnyshkov, D.D., Malpuech, G. (2013). Spin Effects in Polariton Condensates: From Half-Solitons to Analogues of Wormholes. In: Bramati, A., Modugno, M. (eds) Physics of Quantum Fluids. Springer Series in Solid-State Sciences, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37569-9_5

Download citation

Publish with us

Policies and ethics