Skip to main content

Effects of Interactions on Bose-Einstein Condensation of an Atomic Gas

  • Chapter
Physics of Quantum Fluids

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 177))

  • 1872 Accesses

Abstract

The phase transition to a Bose-Einstein condensate is unusual in that it is not necessarily driven by inter-particle interactions but can occur in an ideal gas as a result of a purely statistical saturation of excited states. However, interactions are necessary for any system to reach thermal equilibrium and so are required for condensation to occur in finite time. In this chapter we review the role of interactions in Bose-Einstein condensation, covering both theory and experiment. We focus on measurements performed on harmonically trapped ultracold atomic gases, but also discuss how these results relate to the uniform-system case, which is more theoretically studied and also more relevant for other experimental systems.

We first consider interaction strengths for which the system can be considered sufficiently close to equilibrium to measure thermodynamic behaviour. In particular we discuss the effects of interactions both on the mechanism of condensation (namely the saturation of the excited states) and on the critical temperature at which condensation occurs. We then discuss in more detail the conditions for the equilibrium thermodynamic measurements to be possible, and the non-equilibrium phenomena that occur when these conditions are controllably violated by tuning the strength of interactions in the gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the recently observed Bose-Einstein condensation of a photon gas [5], there is no direct interaction between the light particles. However the interaction with the material environment, which ensures thermalisation, leads to a second-order interaction between the photons.

  2. 2.

    The singular ground-state contribution to the total density is implicitly excluded from the integral in (16.2). As μ approaches zero from below the ground state occupation can become arbitrarily large, as can be seen by inspecting (16.1).

  3. 3.

    Finite-size corrections slightly reduce the ideal-gas critical temperature, by \(k_{\rm B}\varDelta T_{c}^{0} =-\zeta(2)/(2 \zeta(3)) \hbar\omega_{m}\approx- 0.684 \hbar\omega_{m}\), where ω m is the algebraic mean of the trapping frequencies [9].

  4. 4.

    This approach does not take into account the modification of the excitation spectrum due to the presence of the condensate, which is included in more elaborate MF theories such as those of Bogoliubov [11] and Popov [12] (see also [9]). However, it is often sufficient to give the correct leading order MF results.

  5. 5.

    Note that gn 0(r)=max{μ 0−V(r),0}.

  6. 6.

    The shift of the critical point can be equivalently expressed as ΔT c (N) or ΔN c (T), with \(\varDelta N_{c}(T)/N_{\rm c}^{0}\approx-3 \varDelta T_{c}/T_{c}^{0}\).

  7. 7.

    The size of the central critical region is r c ∼(a/λ 0)R T , where \(R_{T} = \sqrt{k_{\rm B}T / m\omega^{2}}\) is the thermal radius of the cloud [30].

  8. 8.

    Note that B 2 is not just a constant but contains logarithmic corrections in a/λ 0 [23]. We neglect these in our discussion since they are not discernible at the current level of experimental precision.

  9. 9.

    The non-interacting equation of state (16.3) cannot be expanded about D c in βμ, but rather in \(\sqrt{-\beta\mu}\); up to first order this expansion gives \(D=D_{c}-2\sqrt{\pi}\sqrt{-\beta\mu}\). This scaling goes some way in explaining the qualitative difference between (16.19) and (16.22) although it cannot be used quantitatively.

  10. 10.

    Note that this relationship is closely related to (16.13).

  11. 11.

    This scaling holds for any distance from the critical point given by \((\mu- \mu_{c})(\lambda _{0}/a)^{2} = {\rm const}\). By applying it to the MF critical point we neglect the logarithmic corrections to \(\mu _{c}^{\rm MF}- \mu_{c}\), which are so far not experimentally observable.

References

  1. A. Einstein, Sitz.ber./Phys. Kl. Preuss. Akad. Wiss. 1, 3 (1925)

    Google Scholar 

  2. K. Huang, Statistical Mechanics (Wiley, New York, 1987)

    MATH  Google Scholar 

  3. C. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  4. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  5. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)

    Article  ADS  Google Scholar 

  6. N. Tammuz, R.P. Smith, R.L.D. Campbell, S. Beattie, S. Moulder, J. Dalibard, Z. Hadzibabic, Phys. Rev. Lett. 106, 230401 (2011)

    Article  ADS  Google Scholar 

  7. R.P. Smith, R.L.D. Campbell, N. Tammuz, Z. Hadzibabic, Phys. Rev. Lett. 106, 250403 (2011)

    Article  ADS  Google Scholar 

  8. R.P. Smith, N. Tammuz, R.L.D. Campbell, M. Holzmann, Z. Hadzibabic, Phys. Rev. Lett. 107, 190403 (2011)

    Article  ADS  Google Scholar 

  9. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  10. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  MATH  Google Scholar 

  11. N.N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947)

    Google Scholar 

  12. V.N. Popov, Functional Integrals and Collective Modes (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  13. R.L.D. Campbell, R.P. Smith, N. Tammuz, S. Beattie, S. Moulder, Z. Hadzibabic, Phys. Rev. A 82, 063611 (2010)

    Article  ADS  Google Scholar 

  14. M. Zaccanti, B. Deissler, C. D’Errico, M. Fattori, M. Jona-Lasinio, S. Mueller, G. Roati, M. Inguscio, G. Modugno, Nat. Phys. 5, 586 (2009)

    Article  Google Scholar 

  15. W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Bose–Einstein condensation in atomic gases, in Proceedings of the International School of Physics Enrico Fermi, vol. CXL (IOS Press, Amsterdam, 1999)

    Google Scholar 

  16. F. Gerbier, J.H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, A. Aspect, Phys. Rev. A 70, 013607 (2004)

    Article  ADS  Google Scholar 

  17. T.D. Lee, C.N. Yang, Phys. Rev. 105, 1119 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  18. T.D. Lee, C.N. Yang, Phys. Rev. 112, 1419 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. Bijlsma, H.T.C. Stoof, Phys. Rev. A 54, 5085 (1996)

    Article  ADS  Google Scholar 

  20. G. Baym, J.P. Blaizot, M. Holzmann, F. Laloë, D. Vautherin, Phys. Rev. Lett. 83, 1703 (1999)

    Article  ADS  Google Scholar 

  21. M. Holzmann, W. Krauth, Phys. Rev. Lett. 83, 2687 (1999)

    Article  ADS  Google Scholar 

  22. J.D. Reppy, B.C. Crooker, B. Hebral, A.D. Corwin, J. He, G.M. Zassenhaus, Phys. Rev. Lett. 84, 2060 (2000)

    Article  ADS  Google Scholar 

  23. P. Arnold, G. Moore, Phys. Rev. Lett. 87, 120401 (2001)

    Article  ADS  Google Scholar 

  24. V.A. Kashurnikov, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. Lett. 87, 120402 (2001)

    Article  ADS  Google Scholar 

  25. M. Holzmann, G. Baym, J.P. Blaizot, F. Laloë, Phys. Rev. Lett. 87, 120403 (2001)

    Article  ADS  Google Scholar 

  26. G. Baym, J.P. Blaizot, M. Holzmann, F. Laloë, D. Vautherin, Eur. Phys. J. B 24, 107 (2001)

    Article  ADS  Google Scholar 

  27. H. Kleinert, Mod. Phys. Lett. B 17, 1011 (2003)

    Article  ADS  Google Scholar 

  28. M. Holzmann, J.N. Fuchs, G.A. Baym, J.P. Blaizot, F. Laloë, C. R. Phys. 5, 21 (2004)

    Article  ADS  Google Scholar 

  29. S. Giorgini, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 54, R4633 (1996)

    Article  ADS  Google Scholar 

  30. P. Arnold, B. Tomášik, Phys. Rev. A 64, 053609 (2001)

    Article  ADS  Google Scholar 

  31. M. Houbiers, H.T.C. Stoof, E.A. Cornell, Phys. Rev. A 56, 2041 (1997)

    Article  ADS  Google Scholar 

  32. M. Holzmann, W. Krauth, M. Naraschewski, Phys. Rev. A 59, 2956 (1999)

    Article  ADS  Google Scholar 

  33. M.J. Davis, P.B. Blakie, Phys. Rev. Lett. 96, 060404 (2006)

    Article  ADS  Google Scholar 

  34. O. Zobay, Laser Phys. 19, 700 (2009)

    Article  ADS  Google Scholar 

  35. J.R. Ensher, D.S. Jin, M.R. Matthews, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 77, 4984 (1996)

    Article  ADS  Google Scholar 

  36. F. Gerbier, J.H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, A. Aspect, Phys. Rev. Lett. 92, 030405 (2004)

    Article  ADS  Google Scholar 

  37. R. Meppelink, R.A. Rozendaal, S.B. Koller, J.M. Vogels, P. van der Straten, Phys. Rev. A 81, 053632 (2010)

    Article  ADS  Google Scholar 

  38. M. Holzmann, G. Baym, Phys. Rev. Lett. 90, 040402 (2003)

    Article  ADS  Google Scholar 

  39. N. Prokof’ev, O. Ruebenacker, B. Svistunov, Phys. Rev. A 69, 053625 (2004)

    Article  ADS  Google Scholar 

  40. C.R. Monroe, E.A. Cornell, C.A. Sackett, C.J. Myatt, C.E. Wieman, Phys. Rev. Lett. 70, 414 (1993)

    Article  ADS  Google Scholar 

  41. M. Arndt, M.B. Dahan, D. Guéry-Odelin, M.W. Reynolds, J. Dalibard, Rev. Mod. Phys. 79, 625 (1997)

    Google Scholar 

  42. N.R. Newbury, C.J. Myatt, C.E. Wieman, Phys. Rev. A 51, R2680 (1995)

    Article  ADS  Google Scholar 

  43. G.M. Kavoulakis, C.J. Pethick, H. Smith, Phys. Rev. A 61, 053603 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Hadzibabic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, R.P., Hadzibabic, Z. (2013). Effects of Interactions on Bose-Einstein Condensation of an Atomic Gas. In: Bramati, A., Modugno, M. (eds) Physics of Quantum Fluids. Springer Series in Solid-State Sciences, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37569-9_16

Download citation

Publish with us

Policies and ethics