Skip to main content

Dynamic Hand Shape Manifold Embedding and Tracking from Depth Maps

  • Conference paper
Computer Vision - ACCV 2012 Workshops (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7729))

Included in the following conference series:

  • 2749 Accesses

Abstract

Hand shapes vary for different views or hand rotations. In addition, the high degree of freedom of hand configurations makes it difficult to track hand shape variations. This paper presents a new manifold embedding method that models hand shape variations in different hand configurations and in different views due to hand rotation. Instead of traditional silhouette images, the hand shapes are modeled using depth map images, which provides rich shape information invariant to illumination changes. These depth map images vary for different viewing directions, similar to shape silhouettes. Sample data along view circles are collected for all the hand configuration variations. A new manifold embedding method using a 4D torus for modeling low dimensional hand configuration and hand rotation is proposed to model the product of three circular manifolds. After learning nonlinear mapping from the proposed embedding space to depth map images, we can achieve the tracking of arbitrary shape variations with hand rotation using particle filter on the embedding manifold. The experiment results from both synthetic and real data show accurate estimations of hand rotation through the estimation of the view parameters and hand configuration from key hand poses and hand configuration phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erol, A., Bebis, G., Nocolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. CVIU, 52–73 (2007)

    Google Scholar 

  2. Hamer, H., Schindler, K., Koller-Meier, E., Van Gool, L.: Tracking a hand manipulating an object. In: Proc. of ICCV, pp. 1475–1482 (2009)

    Google Scholar 

  3. Hamer, H., Gall, J., Urtasun, R., Van Gool, L.: Data-driven animation of hand-object interactions. In: Proc. of FGR, pp. 360–367 (2001)

    Google Scholar 

  4. Oikonomidis, I., Kyriazis, N., Argyros, A.: Full dof tracking of a hand interacting with an object by modeling occlusions and physical constraints. In: Proc. of ICCV, vol. 6, pp. 2088–2095 (2011)

    Google Scholar 

  5. Rosales, R., Athitsos, V., Sclaroff, S.: 3d hand pose reconstruction using specialized mappings. In: Proc. of ICCV, pp. 378–387 (2001)

    Google Scholar 

  6. Urtasun, R., Fleet, D.J., Fua, P.: 3d people tracking with gaussian process dynamical models. In: Proc. of CVPR, pp. 238–245 (2006)

    Google Scholar 

  7. Lee, C.S., Elgammal, A.: Coupled visual and kinematic manifold models for tracking. IJCV 87, 118–139 (2010)

    Article  Google Scholar 

  8. Tian, T.P., Li, R., Sclaroff, S.: Articulated pose estimation in a learned smooth space of feasible solutions, pp. 50–57 (2005)

    Google Scholar 

  9. Guan, H., Feris, R.S., Turk, M.: The isometric self-organizing map for 3d hand pose estimation. In: Proc. of FGR, pp. 263–268 (2006)

    Google Scholar 

  10. Lee, C.S., Park, S.W.: Tracking hand rotation and grasping from an ir camera using cylindrical manifold embedding. In: Proc. of ICPR, pp. 2612–2615 (2010)

    Google Scholar 

  11. Elgammal, A.M., Lee, C.S.: Tracking people on a torus. IEEE Trans. Pattern Anal. Mach. Intell. 31, 520–538 (2009)

    Article  Google Scholar 

  12. Fan, G., Zhang, X.: Video-based human motion estimation by part-whole gait manifold learning. In: Wang, L., Zhao, G., Cheng, L., Pietikainen, M. (eds.) Machine Learning for Vision-Based Motion Analysis, pp. 215–261. Springer (2011)

    Google Scholar 

  13. Lawrence, N.D.: Gaussian process models for visualisation of high dimensional data. In: Proc. of NIPS, pp. 329–336 (2004)

    Google Scholar 

  14. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. of CVPR, pp. 511–518 (2001)

    Google Scholar 

  15. Imagawa, K., Lu, S., Igi, S.: Color-based hands tracking system for sign language recognition. In: Proc. of FGR, p. 462

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, CS., Chun, S.Y., Park, S.W. (2013). Dynamic Hand Shape Manifold Embedding and Tracking from Depth Maps. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37484-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37484-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37483-8

  • Online ISBN: 978-3-642-37484-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics