Skip to main content

Physiology and Pathophysiology of Nasal Breathing

  • Chapter
  • First Online:

Abstract

The respiratory function of the nose is to warm, humidify, and clean the inhaled air. The basic condition for that is an undisturbed nasal air passage. The physical knowledge to understand the different causes for an increased nasal resistance is reported.

From an air-dynamic point of view, the nasal stream canal has a very complicated architectural structure which is a requirement for such an enormous task like the function of respiration. For the exchange of warm-energy and humidity through convection and radiation, it is advantageous to have a narrow flow channel (slit space), since this configuration facilitates the biophysical process. The air needs a sufficient contact with the mucosa. The nasal airstream must be distributed over the entire mucosal surface in the “functional area” of the nasal cavum, that is, the region of the turbinates. In this region, contact time between the air and the mucosa must be as long as possible, and formation of turbulent flow and its regulation corresponding to the phases of the nasal cycle are necessary. Responsible for these requirements is the “inflow area,” which consists in inspiratory flow direction of the vestibule, the internal ostium nasi, and the anterior part of the cavum. The knowledge on the correlation of the structure and respiratory function of the nose, particularly significant for a rhinosurgeon, is discussed. Finally, rhinosurgical consequences from these physiological and pathophysiological knowledge are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altissimi G, Gallucci L, Simoncelli C. La rinomanometria posizionale nella rinite cronica ipertrofico-vasomotoria: osservazioni prima e dopo chirurgia funzionale dei turbinati. Acta Otorhinolaryngol Ital. 1992;12:363–9.

    PubMed  CAS  Google Scholar 

  • Bachmann W. Die Funktionsdiagnostik der behinderten Nasenatmung. Berlin/Heidelberg/New York: Springer; 1982a.

    Book  Google Scholar 

  • Bachmann W. Diagnostik der behinderten Nasenatmung: Teil1: Funktonelle Anatomie und Strömungsphysik. HNO aktuell. 1982b;4:34–8.

    Google Scholar 

  • Bachmann W. Die Nasenklappe, ein funktionell und anatomisch falsch verstandener Begriff. Archklin experOhren-, Nasen- und Kehlkopfkrankh. 1989;194:451–5.

    Article  Google Scholar 

  • Beule AG. Funktionen und Funktionsstörungen der respiratorischen Schleimhaut der Nase und der Nasennebenhöhlen. Laryngorhinootologie. 2010;89:15–34.

    Article  Google Scholar 

  • Burchardt. Die Luftströmung in der Nase unter pathologischen Verhältnissen. Arch f Laryng. 1905;17:123–46.

    Google Scholar 

  • Chen XB, Lee HP, Chong VF, et al. Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model. Laryngoscope. 2009;119: 1730–6.

    Article  PubMed  Google Scholar 

  • Chen XB, Lee HP, Chong VF, et al. Impact of inferior turbinate hypertrophy on the aerodynamic pattern and physiological functions of the turbulent airflow – a CFD simulation model. Rhinology. 2010;48:163–8.

    PubMed  Google Scholar 

  • Churchill SE, Shackelford LL, Georgi JN, et al. Morphological variation and airflow dynamics in the human nose. Am J Hum Biol. 2004;16:625–38.

    Article  PubMed  Google Scholar 

  • Cole P, Chaban R, Naito K, et al. The obstructive nasal septum. Effect of simulated deviations on the nasal airflow resistance. Arch Otolaryngol Head Neck Surg. 1988;114:410–2.

    Article  PubMed  CAS  Google Scholar 

  • Dinis PB, Haider H. Septoplasty: long-term evaluation of results. Am J Otolaryngol. 2002;23:85–90.

    Article  PubMed  Google Scholar 

  • Dishoeck HAE. Die Bedeutung der äußeren Nase für die respiratorische Luftströmung. Acta oto-laryngol. 1936;24:494–505.

    Article  Google Scholar 

  • Dishoeck HAE. Inspiratory nasal resistance. Acta Otolaryngol. 1942;30:431–9.

    Article  Google Scholar 

  • Dommerby H, Rasmussen O, Rosborg J. Long-term results of septoplastic operations. ORL J Otorhinolaryngol Relat Spec. 1985;147:151–7.

    Article  Google Scholar 

  • Eccles R. A role for the nasal cycle in respiratory defence. Eur Respir J. 1996;9:371–6.

    Article  PubMed  CAS  Google Scholar 

  • Eccles R. Nasal airflow in health and disease. Acta Otolaryngol. 2000;120:580–95.

    Article  PubMed  CAS  Google Scholar 

  • Fischer R. Die Physik der Atemströmung in der Nase. Berlin: Habilitationsschrift FU; 1969.

    Google Scholar 

  • Fjermedal O, Saunte C, Pedersen S. Septoplasty and/or submucous resection? 5 years nasal septum operations. J Laryngol Otol. 1988;102:796–8.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto S, Yamaguchi K, Gunjigake K. Clinical estimation of mouth breathing. Am J Orthod Dentofacial Orthop. 2009;136:631–7.

    Google Scholar 

  • Gilbert AN, Rosenwasser AM. Biological rhythmicity of nasal airway patency – a reexamination of the nasal cycle. Acta Otolaryngol (Stockh). 1987;104:180–6.

    Article  CAS  Google Scholar 

  • Gogniashvili G, Steinmeier E, Mlynski G, et al. Physiologic and pathologic septal deviations: subjective and objective functional rhinologic findings. Rhinology. 2011;49:24–9.

    Google Scholar 

  • Gola R, Cheynet F, Guyot L, et al. Nasal injuries during labor and in early childhood. Etiopathogenesis, consequences and therapeutic options. Rev Stomatol Chir Maxillofac. 2002;103:41–55.

    PubMed  CAS  Google Scholar 

  • Gruetzenmacher S, Robinson DM, Lang C, et al. Investigations of the influence of external nasal deformities on nasal airflow. ORL J Otorhinolaryngol Relat Spec. 2005;67(3):154–9.

    Article  Google Scholar 

  • Gruetzenmacher S, Robinson DM, Grafe K, et al. First findings concerning airflow in noses with septal deviation and compensatory turbinate hypertrophy – a model study. ORL J Otorhinolaryngol Relat Spec. 2006;68:199–205.

    Article  Google Scholar 

  • Grymer L, Rosborg J. The aging nose (Long-term results following plastic septal surgery). J Laryngol Otol. 1987;101:363–5.

    Article  Google Scholar 

  • Hanif J, Jawad S, Eccles R. The nasal cycle in health and disease. Clin Otolaryngol. 2000;25:461–7.

    Article  PubMed  CAS  Google Scholar 

  • Hanif J, Jawad S, Eccles R. A study to assess the usefulness of a portable spirometer to quantify the severity of nasal septal deviation. Rhinology. 2003;41:11–5.

    PubMed  Google Scholar 

  • Haraldsson PO, Nordemar H, Anggard A. Long-term results after septal surgery-submucous resection versus septoplasty. ORL J Otorhinolaryngol Relat Spec. 1987;49:218–22.

    Article  PubMed  CAS  Google Scholar 

  • Hellmann K. Untersuchungen über die Nase als Luftweg. Z f Hals-Nas-Ohr-Heilk. 1926;15:354–7.

    Google Scholar 

  • Hess MM, Lamprecht J, Horlitz S. Experimentelle Untersuchungen in der Nasenhaupthöhle des Menschen im Nasenmodell. Laryngol Rhinol Otol. 1992;71:468–71.

    Article  CAS  Google Scholar 

  • Illum P. Septoplasty and compensatory inferior turbinate hypertrophy: long-term results after randomized turbinoplasty. Eur Arch Otorhinolaryngol. 1997;254:89–92.

    Article  Google Scholar 

  • Kastl KG, Rettinger G, Keck T. The impact of nasal surgery on air-conditioning of the nasal airways. Rhinology. 2009;47:237–41.

    PubMed  Google Scholar 

  • Kayser R. Über den Weg der Atemluft durch die Nase. Z Ohrenheilk. 1889;20:96–109.

    Google Scholar 

  • Kayser R. Die exakte Messung der Luftdurchgängigkeit der Nase. Arch Laryng Rhinol (Berl). 1895;8:101.

    Google Scholar 

  • Keck T, Lindemann J. Strömungssimulation und Klimatisierung in der Nase. Laryngorhinootologie. 2010;89:1–14.

    Article  Google Scholar 

  • Kim JK, Yoon JH, Kim CH, et al. Particle image velocimetry measurements for the study of nasal airflow. Acta Otolaryngol. 2006;126:282–7.

    Article  PubMed  Google Scholar 

  • Kim DH, Park HY, Kim HS, et al. Effect of septoplasty on inferior turbinate hypertrophy. Arch Otolaryngol Head Neck Surg. 2008;134:419–23.

    Article  PubMed  Google Scholar 

  • Lang C, Grützenmacher S, Mlynski B, et al. Investigating the nasal cycle using endoscopy, rhinoresistometry, and acoustic rhinometry. Laryngoscope. 2003;113:284–9.

    Article  PubMed  Google Scholar 

  • Leiter JC, Baker GL. Partitioning of ventilation between nose and mouth: the role of nasal resistance. Am J Orthod Dentofacial Orthop. 1989;95:432–8.

    Article  PubMed  CAS  Google Scholar 

  • Lind FG. Respiratory drive and breathing pattern during exercise in man. Acta Physiol Scand Suppl. 1984;533:1–47.

    PubMed  CAS  Google Scholar 

  • Masing H. Experimentelle Untersuchungen über den Strömungsverlauf im Nasenmodell. Arch Klin Exp Ohern Nasen Kehlkopfheilk. 1967;189:371–81.

    Article  CAS  Google Scholar 

  • Mink PJ. Physiologie der oberen Luftwege. Leipzig: Vogel; 1920.

    Google Scholar 

  • Mirza N, Kroger H, Doty R. Influence of age on the “nasal cycle”. Laryngoscope. 1997;107:62–6.

    Article  PubMed  CAS  Google Scholar 

  • Mlynski G. A method for studying nasal airflow by means of fluid dynamic experiments. Z Med Phys. 2000a;10:207–14.

    Google Scholar 

  • Mlynski G. Aerodynamik der Nase-Physiologie und Pathophysi ologie. HNO-Praxis Heute. 2000b;20:61–81.

    Google Scholar 

  • Mlynski G. Wiederherstellende Verfahren bei gestörter Funktion der oberen Atemwege. Nasale Atmung. Laryngorhinootologie. 2005;84:101–17.

    Article  Google Scholar 

  • Mlynski G. Surgery of the nasal septum. Facial Plast Surg. 2006;22:223–9.

    Article  PubMed  CAS  Google Scholar 

  • Mlynski G, Loew J. Experimentelle Studie zum Strömungsverhalten in der Nase. Teil 2: Untersuchungen im laminaren Bereich bei Heliumatmung. Z Med Phys. 1992a;2:224–9.

    Google Scholar 

  • Mlynski G, Loew J. Experimentelle Studie zum Strömungsverhalten in der Nase. Teil 1:Untersuchungen zum V-abhängigen Verhalten des Exponenten x der Atem-Volumengeschwindigkeitsbeziehung. Z Med Phys. 1992b;2:100–2.

    Google Scholar 

  • Mlynski G, Grutzenmacher S, Plontke S, et al. Correlation of nasal morphology and respiratory function. Rhinology. 2001;39:197–201.

    PubMed  CAS  Google Scholar 

  • Naito K, Iwata S, Kondo M, et al. Human respiratory airflow through an artificial nasal model: pressure/flow relationship. Auris Nasus Larynx. 1989;16:89–97.

    PubMed  CAS  Google Scholar 

  • Paulsen E. Experimentelle Untersuchungen über die Strömung der Luft in der Nasenhöhle. Sonderber D Akad d Wiss Wien. 1882;85:352–73.

    Google Scholar 

  • Podoshin L, Gertner R, Fradis M, et al. Incidence and treatment of deviation of nasal septum in newborns. Ear Nose Throat J. 1991;70:485–7.

    PubMed  CAS  Google Scholar 

  • Rethi L. Experimentelle Untersuchungen über die Luftströmung in der normalen Nase sowie bei pathologischen Veränderungen derselben und des Nasenrachenraumes. Sonderber D Akad dWiss Wien. 1900;109:17–36.

    Google Scholar 

  • Sawyer K, Brown JS, Hazucha MJ, et al. The effect of exercise on nasal uptake of ozone in healthy human adults. J Appl Physiol. 2007;102:1380–6.

    Article  PubMed  CAS  Google Scholar 

  • Scheideler J. Die Luftströmung in der menschlichen Nase bei der Atmung. Z f Hals-Nas-Ohr-Heilk. 1938;44: 228–39.

    Google Scholar 

  • Scheithauer M. Nasenmuschelchirurgie und “Empty nose” Syndrom. Laryngorhinootologie. 2010;89:79–102.

    Article  Google Scholar 

  • Simmen D, et al. A dynamic and direct visualization model for the study of nasal airflow. Arch Otolaryngol Head Neck Surg. 1999;125:1015–21.

    Article  PubMed  CAS  Google Scholar 

  • Sooknundun M, Deka RC, Kacker SK, et al. Nasal septal deviation at birth and its diagnosis. Indian J Pediatr. 1986;53:105–8.

    Article  PubMed  CAS  Google Scholar 

  • Stoksted P. Long term results, following plastic septum surgery. Int Rhinol. 1969;7:53–61.

    Google Scholar 

  • Takahashi K. Vorläufige Mitteilung über die Erforschung des Luftweges in der Nase des Menschen. Z Laryng Rhinol. 1922;11:203.

    Google Scholar 

  • Tonndorf J. Der Weg der Atemluft in der menschlichen Nase. Arch Ohr- Nas-u Kehlk-Heilk. 1939;146:41–63.

    Article  Google Scholar 

  • Uygur K, Yariktas M, Tuz M, et al. The incidence of septal deviation in newborns. Kulak Burun Bogaz Ihtis Derg. 2002;9:117–20.

    PubMed  Google Scholar 

  • Wiesmiller K, Keck T, Rettinger G, et al. Nasal air conditioning in patients before and after septoplasty with bilateral turbinoplasty. Laryngoscope. 2006;116:890–4.

    Article  PubMed  Google Scholar 

  • Zuckerkandl E. Normale und pathologische Anatomie der Nase und ihrer pneumatischen Anhänge. Wien: Wilhelm Braumüller; 1882.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter H. Mlynski PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mlynski, G.H. (2013). Physiology and Pathophysiology of Nasal Breathing. In: Önerci, T. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37250-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37250-6_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37249-0

  • Online ISBN: 978-3-642-37250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics