Skip to main content

Nose as a Route for Drug Delivery

  • Chapter
  • First Online:

Abstract

Intranasal administration of topical drugs has always been used for symptomatic relief or treatment of local nasal dysfunctions. However, over the last years, the use of the nasal route for drug delivery as a viable and promising alternative to conventional oral and parenteral routes has tremendously increased. Indeed, owing to the high vascularisation and large absorptive surface, the nasal respiratory mucosa is recognised as an appropriate site for systemic entry of drugs, circumventing the gastrointestinal and hepatic first-pass metabolism. Accordingly, the extent of absorption and bioavailability of several therapeutic compounds have been improved with intranasal delivery, particularly those that are poorly permeable and/or highly susceptible to enzymatic degradation, such as small polar molecules, peptides and proteins. On the other hand, the intranasal route has also demonstrated to have potential for targeting central nervous system-acting drugs since nasal olfactory region allows the direct connection between the nose and the brain.

In this chapter, the most relevant in vivo and in vitro findings that support the advantages of the intranasal delivery of drugs with topical, systemic and central nervous system action are critically discussed as well as alternative approaches frequently adopted to overcome the high mucociliary clearance, the reduced residence time and the poor nasal permeability of some compounds. Throughout this overview, nasal therapeutic compounds already marketed and those currently under investigation are also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adappa ND, Wei CC, Palmer J. Nasal irrigation with or without drugs: the evidence. Curr Opin Otolaryngol Head Neck Surg. 2012;20:23–57.

    Article  Google Scholar 

  • Ahmed S, Sileno AP, deMeireles JC, et al. Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects. Pharm Res. 2000;17:974–7.

    Article  PubMed  CAS  Google Scholar 

  • Ahn B-N, Kim S-K, Shim C-K. Proliposomes as an intranasal dosage form for the sustained delivery of propranolol. J Contol Release. 1995; 34:203–10.

    Article  CAS  Google Scholar 

  • Akpinar ME, Yigit O, Akakin D, et al. Topical glucocorticoid reduces the topical decongestant-induced histologic changes in an animal model nasal mucosa. Laryngoscope. 2012;122:741–6.

    Article  PubMed  CAS  Google Scholar 

  • Alsarra IA, Hamed AY, Alanazi FK. Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug Deliv. 2008;15:313–21.

    Article  PubMed  CAS  Google Scholar 

  • Alsarra IA, Hamed AY, Alanazi FK, et al. Vesicular systems for intranasal drug delivery. In: Jain KK, editor. Drug delivery to the central nervous system. New York: Humana; 2010. doi:10.1007/978-1-60761-529-3_8.

    Google Scholar 

  • Anderson BD. Prodrugs for improved CNS delivery. Adv Drug Deliv Rev. 1996;19:171–202.

    Article  CAS  Google Scholar 

  • Anderson JM, Etches D. Prevention and management of postpartum hemorrhage. Am Fam Physician. 2007;75:875–82.

    PubMed  Google Scholar 

  • Arnott N, Harrold AJ, Lynch P. Variations in oxytocin regimes in Scottish labour wards in 1998. J Obstet Gynaecol. 2000;20:235–8.

    Article  PubMed  CAS  Google Scholar 

  • Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7:967–75.

    Article  PubMed  CAS  Google Scholar 

  • Atluri H, Tirucherai GS, Dias CS, et al. Ocular, nasal, pulmonary and otic routes of drug delivery. In: Jasti BR, Ghosh TK, editors. Theory and practice of contemporary pharmaceutics. New York: CRC Press; 2005. doi:10.1201/9780203644478.ch16.

    Google Scholar 

  • Babey M, Kopp P, Robertson GL. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol. 2011;7:701–14.

    Article  PubMed  CAS  Google Scholar 

  • Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv. 2012;9:19–31.

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian R, Dwyer A, Seminara SB, et al. Human GnRH deficiency: a unique disease model to unravel the ontogeny of GnRH neurons. Neuroendocrinology. 2010;92:81–99.

    Article  PubMed  CAS  Google Scholar 

  • Barakat NS, Omar SA, Ahmed AA. Carbamazepine uptake into rat brain following intra-olfactory transport. J Pharm Pharmacol. 2006;58:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Behl CR, Pimplaskar HK, Sileno AP, et al. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev. 1998;29:89–116.

    Article  PubMed  CAS  Google Scholar 

  • Bellad M, Tara D, Ganachari M, et al. Prevention of postpartum haemorrhage with sublingual misoprostol or oxytocin: a double-blind randomised controlled trial. BJOG. 2012;119:975–86.

    Article  PubMed  CAS  Google Scholar 

  • Bende M, Löth S. Vascular effects of topical oxymetazoline on human nasal mucosa. J Laryngol Otol. 1986;100:285–8.

    Article  PubMed  CAS  Google Scholar 

  • Benedict C, Brede S, Schiöth HB, et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes. 2011;60:114–8.

    Article  PubMed  CAS  Google Scholar 

  • Berglund RK, Tangen CM, Powell IJ, et al. Ten-year follow-up of neoadjuvant therapy with goserelin acetate and flutamide before radical prostatectomy for clinical T3 and T4 prostate cancer: update on Southwest Oncology Group Study 9109. Urology. 2012;79:633–7.

    Article  PubMed  Google Scholar 

  • Bitter C, Suter-Zimmermann K, Surber C. Nasal drug delivery in humans. Curr Probl Dermatol. 2011;40:20–35.

    Article  PubMed  CAS  Google Scholar 

  • Caenen M, Hamels K, Deron P, et al. Comparison of decongestive capacity of xylometazoline and pseudoephedrine with rhinomanometry and MRI. Rhinology. 2005;43:205–9.

    PubMed  CAS  Google Scholar 

  • Cass LM, Efthymiopoulos C, Bye A. Pharmacokinetics of zanamivir after intravenous, oral, inhaled or intranasal administration to healthy volunteers. Clin Pharmacokinet. 1999;36:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev. 2010;62:394–407.

    Article  PubMed  CAS  Google Scholar 

  • Chanson P, Salenave S. Treatment of neurogenic diabetes insipidus. Ann Endocrinol (Paris). 2011;72:496–9.

    Article  CAS  Google Scholar 

  • Chen M, Li XR, Zhou YX, et al. Improved absorption of salmon calcitonin by ultraflexible liposomes through intranasal delivery. Peptides. 2009;30:1288–95.

    Article  PubMed  CAS  Google Scholar 

  • Chesnut 3rd CH, Azria M, Silverman S, et al. Salmon calcitonin: a review of current and future therapeutic indications. Osteoporos Int. 2008;19:479–91.

    Article  PubMed  Google Scholar 

  • Cho E, Gwak H, Chun I. Formulation and evaluation of ondansetron nasal delivery systems. Int J Pharm. 2008;349:101–7.

    Article  PubMed  CAS  Google Scholar 

  • Christrup LL, Foster D, Popper LD, et al. Pharmacokinetics, efficacy, and tolerability of fentanyl following intranasal versus intravenous administration in adults undergoing third-molar extraction: a randomized, double-blind, double-dummy, two-way, crossover study. Clin Ther. 2008;30:469–81.

    Article  PubMed  CAS  Google Scholar 

  • Colombo G, Lorenzini L, Zironi E, et al. Brain distribution of ribavirin after intranasal administration. Antiviral Res. 2011;92:408–14.

    Article  PubMed  CAS  Google Scholar 

  • Corboz MR, Rivelli MA, Mingo GG, et al. Mechanism of decongestant activity of alpha 2-adrenoceptor agonists. Pulm Pharmacol Ther. 2008;21:449–54.

    Article  PubMed  CAS  Google Scholar 

  • Costantino HR, Illum L, Brandt G, et al. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Costantino HR, Leonard AK, Brandt G, et al. Intranasal administration of acetylcholinesterase inhibitors. BMC Neurosci. 2008;9 Suppl 3:S6.

    Article  PubMed  CAS  Google Scholar 

  • Csaba N, Gracia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev. 2009;61:140–57.

    Article  PubMed  CAS  Google Scholar 

  • Dahlin M, Björk E. Nasal administration of a physostigmine analogue (NXX-066) for Alzheimer’s disease to rats. Int J Pharm. 2001;212:267–74.

    Article  PubMed  CAS  Google Scholar 

  • Dahlin M, Bergman U, Jansson B, et al. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm Res. 2000;17:737–42.

    Article  PubMed  CAS  Google Scholar 

  • Dahlin M, Jansson B, Björk E. Levels of dopamine in blood and brain following nasal administration to rats. Eur J Pharm Sci. 2001;14:75–80.

    Article  PubMed  CAS  Google Scholar 

  • Deveci S, Peşkircioğlu L, Aygün C, et al. Sublingual sildenafil in the treatment of erectile dysfunction: faster onset of action with less dose. Int J Urol. 2004;11:989–92.

    Article  PubMed  CAS  Google Scholar 

  • Devogelaer JP, Boutsen Y, Manicourt DH. Biologicals in osteoporosis: teriparatide and parathyroid hormone in women and men. Curr Osteoporos Rep. 2010;8:154–61.

    Article  PubMed  Google Scholar 

  • Dhuria SV, Hanson LR, Frey 2nd WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99:1654–73.

    PubMed  CAS  Google Scholar 

  • Dodick D, Brandes J, Elkind A, et al. Speed of onset, efficacy and tolerability of zolmitriptan nasal spray in the acute treatment of migraine: a randomised, double-blind, placebo-controlled study. CNS Drugs. 2005;19:125–36.

    Article  PubMed  CAS  Google Scholar 

  • du Plessis LH, Lubbe J, Strauss T, et al. Enhancement of nasal and intestinal calcitonin delivery by the novel PheroidTM fatty acid based delivery system, and by N-trimethyl chitosan chloride. Int J Pharm. 2010;385:181–6.

    Article  PubMed  CAS  Google Scholar 

  • Dykewicz MS, Hamilos DL. Rhinitis and sinusitis. J Allergy Clin Immunol. 2010;125 Suppl 2:S103–15.

    Article  PubMed  Google Scholar 

  • Elshafeey AH, Bendas ER, Mohamed OH. Intranasal microemulsion of sildenafil citrate: in vitro evaluation and in vivo pharmacokinetic study in rabbits. AAPS PharmSciTech. 2009;10:361–7.

    Article  PubMed  CAS  Google Scholar 

  • EMA, European Medicines Agency. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/001101/human_med_001405.jsp&mid=WC0b01ac058001d124 (2012). Accessed 13 July 2012.

  • Falser N, Wober W, Rahlfs VW, et al. Comparative efficacy and safety of azelastine and levocabastine nasal sprays in patients with seasonal allergic rhinitis. Arzneimittelforschung. 2001;51:387–93.

    PubMed  CAS  Google Scholar 

  • FDAa – U.S. Food and Drug Administration. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm (2012). Accessed 13 July 2012.

  • FDAb – U.S. Food and Drug Administration. http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm093833.htm (2012). Accessed 13 July 2012.

  • Fewtrell MS, Loh KL, Blake A, et al. Randomised, double blind trial of oxytocin nasal spray in mothers expressing breast milk for preterm infants. Arch Dis Child Fetal Neonatal Ed. 2006;91:F169–74.

    Article  PubMed  CAS  Google Scholar 

  • Fisher A, Watling M, Smith A, et al. Pharmacokinetic comparisons of three nasal fentanyl formulations; pectin, chitosan and chitosan-poloxamer 188. Int J Clin Pharmacol Ther. 2010;48:138–45.

    PubMed  CAS  Google Scholar 

  • Fitzgibbon D, Morgan D, Dockter D, et al. Initial pharmacokinetic, safety and efficacy evaluation of nasal morphine gluconate for breakthrough pain in cancer patients. Pain. 2003;106:309–15.

    Article  PubMed  CAS  Google Scholar 

  • Florence K, Manisha L, Kumar BA, et al. Intranasal clobazam delivery in the treatment of status epilepticus. J Pharm Sci. 2011;100:692–703.

    Article  PubMed  CAS  Google Scholar 

  • Foreman A, Boase S, Psaltis A, et al. Role of bacterial and fungal biofilms in chronic rhinosinusitis. Curr Allergy Asthma Rep. 2012;12:127–35.

    Article  PubMed  Google Scholar 

  • Franco Jr JG, Baruffi RL, Mauri AL, et al. Prospective randomized comparison of ovarian blockade with nafarelin versus leuprolide during ovarian stimulation with recombinant FSH in an ICSI program. J Assist Reprod Genet. 2001;18:593–7.

    Article  PubMed  Google Scholar 

  • Fransén N, Bredenberg S, Björk E. Clinical study shows improved absorption of desmopressin with novel formulation. Pharm Res. 2009;26:1618–25.

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Yu S, Chen Q, et al. A randomized controlled trial of low-dose recombinant human interferons alpha-2b nasal spray to prevent acute viral respiratory infections in military recruits. Vaccine. 2010;28:4445–51.

    Article  PubMed  CAS  Google Scholar 

  • Gawel M, Aschoff J, May A, et al. Zolmitriptan 5 mg nasal spray: efficacy and onset of action in the acute treatment of migraine–results from phase 1 of the REALIZE Study. Headache. 2005;45:7–16.

    Article  PubMed  Google Scholar 

  • Giavina-Bianchi P, Agondi R, Stelmach R, et al. Fluticasone furoate nasal spray in the treatment of allergic rhinitis. Ther Clin Risk Manag. 2008;4:465–72.

    PubMed  CAS  Google Scholar 

  • Goodsell A, Zhou F, Gupta S, et al. Beta7-integrin-independent enhancement of mucosal and systemic anti-HIV antibody responses following combined mucosal and systemic gene delivery. Immunology. 2008;123:378–89.

    Article  PubMed  CAS  Google Scholar 

  • Graf P. Rhinitis medicamentosa: aspects of pathophysiology and treatment. Allergy. 1997;52 Suppl 4:28–34.

    Article  PubMed  CAS  Google Scholar 

  • Grassin-Delyle S, Buenestado A, Naline E, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134:366–79.

    Article  PubMed  CAS  Google Scholar 

  • Gungor S, Okyar A, Erturk-Toker S, et al. Ondansetron-loaded chitosan microspheres for nasal antiemetic drug delivery: an alternative approach to oral and parenteral routes. Drug Dev Ind Pharm. 2010;36:806–13.

    Article  PubMed  CAS  Google Scholar 

  • Gupta H, Sharma A. Recent trends in protein and peptide drug delivery systems. Asian J Pharm. 2009;3:69–75. Available from: http://www.asiapharmaceutics.info/text.asp?2009/3/2/69/55041. Accessed 13 July 2012.

  • Hallschmid M, Higgs S, Thienel M, et al. Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes. 2012;61:782–9.

    Article  PubMed  CAS  Google Scholar 

  • Hanson LR, Frey 2nd WH. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS. J Neuroimmune Pharmacol. 2007;2:81–6.

    Article  PubMed  Google Scholar 

  • Hanson LR, Frey 2nd WH. Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9 Suppl 3:S5.

    Article  PubMed  CAS  Google Scholar 

  • Hinkula J, Hagbom M, Wahren B, et al. Safety and immunogenicity, after nasal application of HIV-1 DNA gagp37 plasmid vaccine in young mice. Vaccine. 2008;26:5101–6.

    Article  PubMed  CAS  Google Scholar 

  • Hochban W, Althoff H, Ziegler A. Nasal decongestion with imidazoline derivatives: acoustic rhinometry measurements. Eur J Clin Pharmacol. 1999;55:7–12.

    Article  PubMed  CAS  Google Scholar 

  • Howarth PH. A comparison of the anti-inflammatory properties of intranasal corticosteroids and antihistamines in allergic rhinitis. Allergy. 2000;62:6–11.

    Article  Google Scholar 

  • Hussain AA, Dakkuri A, Itoh S. Nasal absorption of ondansetron in rats: an alternative route of drug delivery. Cancer Chemother Pharmacol. 2000;45:432–4.

    Article  PubMed  CAS  Google Scholar 

  • Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002;7:1184–9.

    Article  PubMed  CAS  Google Scholar 

  • Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56:3–17.

    Article  PubMed  CAS  Google Scholar 

  • Illum L. Nasal drug delivery – recent developments and future prospects. J Control Release. 2012;161:254–63.

    Article  PubMed  CAS  Google Scholar 

  • Illum L, Watts P, Fisher AN, et al. Intranasal delivery of morphine. J Pharmacol Exp Ther. 2002;301:391–400.

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Nabar S, Dandekar P, et al. Micellar nanocarriers: potential nose-to-brain delivery of zolmitriptan as novel migraine therapy. Pharm Res. 2010;27:655–64.

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Gao L, Wang X, et al. The application of mucoadhesive polymers in nasal drug delivery. Drug Dev Ind Pharm. 2010;36:323–36.

    Article  PubMed  CAS  Google Scholar 

  • Jogani VV, Shah PJ, Mishra P, et al. Nose-to-brain delivery of tacrine. J Pharm Pharmacol. 2007;59:1199–205.

    Article  PubMed  CAS  Google Scholar 

  • Jogani V, Jinturkar K, Vyas T, et al. Recent patents review on intranasal administration for CNS drug delivery. Recent Pat Drug Deliv Formul. 2008;2:25–40.

    Article  PubMed  CAS  Google Scholar 

  • Kaasa S, Moksnes K, Nolte T, et al. Pharmacokinetics of intranasal fentanyl spray in patients with cancer and breakthrough pain. J Opioid Manag. 2010;6:17–26.

    Article  PubMed  Google Scholar 

  • Kaliner MA, Storms W, Tilles S, et al. Comparison of olopatadine 0.6% nasal spray versus fluticasone propionate 50 microg in the treatment of seasonal allergic rhinitis. Allergy Asthma Proc. 2009;30:255–62.

    Article  PubMed  CAS  Google Scholar 

  • Kang ML, Cho CS, Yoo HS. Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv. 2009;27:857–65.

    Article  PubMed  CAS  Google Scholar 

  • Kao HD, Traboulsi A, Itoh S, et al. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res. 2000;17:978–84.

    Article  PubMed  CAS  Google Scholar 

  • Kim TK, Kang W, Chun IK, et al. Pharmacokinetic evaluation and modeling of formulated levodopa intranasal delivery systems. Eur J Pharm Sci. 2009;38:525–32.

    Article  PubMed  CAS  Google Scholar 

  • Köping-Höggård M, Sánchez A, Alonso MJ. Nanoparticles as carriers for nasal vaccine delivery. Expert Rev Vaccines. 2005;4:185–96.

    Article  PubMed  CAS  Google Scholar 

  • Kubota R, Komiyama T, Shimada H. Evaluation of the method for nifedipine administration for a rapid onset of clinical effect: a clinical study in normal volunteers. Yakugaku Zasshi. 2001;121:355–64.

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Misra A, Babbar AK, et al. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm. 2008;358:285–91.

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Macbeth AH, Pagani JH, et al. Oxytocin: the great facilitator of life. Prog Neurobiol. 2009;88:127–51.

    PubMed  CAS  Google Scholar 

  • Lee SL, Yu LX, Cai B, et al. Scientific considerations for generic synthetic salmon calcitonin nasal spray products. AAPS J. 2011;13:14–9.

    Article  PubMed  CAS  Google Scholar 

  • Lerner EN, van Zanten EH, Stewart GR. Enhanced delivery of octreotide to the brain via transnasal iontophoretic administration. J Drug Target. 2004;12:273–80.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Gorukanti S, Choi YM, et al. Rapid-onset intranasal delivery of anticonvulsants: pharmacokinetic and pharmacodynamic evaluation in rabbits. Int J Pharm. 2000;199:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Nandi I, Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm. 2002;237:77–85.

    Article  PubMed  CAS  Google Scholar 

  • Li R, Lim A, Alonso S. Attenuated Bordetella pertussis BPZE1 as a live vehicle for heterologous vaccine antigens delivery through the nasal route. Bioeng Bugs. 2011;2:315–9.

    Article  PubMed  Google Scholar 

  • Lim M, Citardi MJ, Leong JL. Topical antimicrobials in the management of chronic rhinosinusitis: a systematic review. Am J Rhinol. 2008;22:381–9.

    Article  PubMed  Google Scholar 

  • Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614–28.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzi JC, Trombone AP, Rocha CD, et al. Intranasal vaccination with messenger RNA as a new approach in gene therapy: use against tuberculosis. BMC Biotechnol. 2010;10:77.

    Article  PubMed  CAS  Google Scholar 

  • Mahajan HS, Gattani S. In situ gels of metoclopramide hydrochloride for intranasal delivery: in vitro evaluation and in vivo pharmacokinetic study in rabbits. Drug Deliv. 2010;17:19–27.

    Article  PubMed  CAS  Google Scholar 

  • Maranta CA, Simmen D. Decongestant nasal spray. Results of a rhinomanometric double-blind study. Schweiz Med Wochenschr. 1996;126:1875–80.

    PubMed  CAS  Google Scholar 

  • Mathias NR, Hussain MA. Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci. 2010;99:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Vintiñi E, Villena J. Lactococcus lactis as an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections. Bioeng Bugs. 2010;1:313–25.

    Article  PubMed  Google Scholar 

  • Meltzer EO, Caballero F, Fromer LM, et al. Treatment of congestion in upper respiratory diseases. Int J Gen Med. 2010;3:69–91.

    Article  PubMed  CAS  Google Scholar 

  • Merkus FW, Van den Berg MP. Can nasal drug delivery bypass the blood–brain barrier? Questioning the direct transport theory. Drugs R D. 2007;8:133–44.

    Article  PubMed  CAS  Google Scholar 

  • Misra A, Ganesh S, Shahiwala A, et al. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6:252–73.

    PubMed  CAS  Google Scholar 

  • Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379:146–57.

    Article  PubMed  CAS  Google Scholar 

  • Moenter SM. Identified GnRH neuron electrophysiology: a decade of study. Brain Res. 2010;1364:10–24.

    Article  PubMed  CAS  Google Scholar 

  • Nevéus T. Nocturnal enuresis – theoretic background and practical guidelines. Pediatr Nephrol. 2011;26:1207–14.

    Article  PubMed  Google Scholar 

  • Ozgönenel B, Rajpurkar M, Lusher JM. How do you treat bleeding disorders with desmopressin? Postgrad Med J. 2007;83:159–63.

    Article  PubMed  CAS  Google Scholar 

  • Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14:3754–79.

    Article  PubMed  CAS  Google Scholar 

  • Packer M, Fowler MB, Roecker EB, et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002;106:2194–9.

    Article  PubMed  Google Scholar 

  • Parra AL, Rodriguez JC. Nasal neuro EPO could be a reliable choice for neuroprotective stroke treatment. Cent Nerv Syst Agents Med Chem. 2012;12:60–8.

    Article  PubMed  CAS  Google Scholar 

  • Patil S, Babbar A, Mathur R, et al. Mucoadhesive chitosan microspheres of carvedilol for nasal administration. J Drug Target. 2010;18:321–31.

    Article  PubMed  CAS  Google Scholar 

  • Patil SB, Kaul A, Babbar A, et al. In vivo evaluation of alginate microspheres of carvedilol for nasal delivery. J Biomed Mater Res B Appl Biomater. 2012;100:249–55.

    PubMed  Google Scholar 

  • Petersen H, Kullberg A, Edsbäcker S, et al. Nasal retention of budesonide and fluticasone in man: formation of airway mucosal budesonide-esters in vivo. Br J Clin Pharmacol. 2001;51:159–63.

    PubMed  CAS  Google Scholar 

  • Pires A, Fortuna A, Alves G, et al. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12:288–311.

    PubMed  CAS  Google Scholar 

  • Rajinikanth PS, Sankar C, Mishra B. Sodium alginate microspheres of metoprolol tartrate for intranasal systemic delivery: development and evaluation. Drug Deliv. 2003;10:21–8.

    Article  PubMed  CAS  Google Scholar 

  • Rautio J, Laine K, Gynther M, et al. Prodrug approaches for CNS delivery. AAPS J. 2008;10:92–102.

    Article  PubMed  CAS  Google Scholar 

  • Roland PS, Marple BF, Wall GM. Olopatadine nasal spray for the treatment of allergic rhinitis. Expert Rev Clin Immunol. 2010;6:197–204.

    Article  PubMed  CAS  Google Scholar 

  • Ross TM, Martinez PM, Renner JC, et al. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151:66–77.

    Article  PubMed  CAS  Google Scholar 

  • Ruis H, Rolland R, Doesburg W, et al. Oxytocin enhances onset of lactation among mothers delivering prematurely. Br Med J (Clin Res Ed). 1981;283:340–2.

    Article  CAS  Google Scholar 

  • Safdarian L, Mohammadi FS, Alleyassin A, et al. Clinical outcome with half-dose depot triptorelin is the same as reduced-dose daily buserelin in a long protocol of controlled ovarian stimulation for ICSI/embryo transfer: a randomized double-blind clinical trial (NCT00461916). Hum Reprod. 2007;22:2449–54.

    Article  PubMed  CAS  Google Scholar 

  • Salib RJ, Howarth PH. Safety and tolerability profiles of intranasal antihistamines and intranasal corticosteroids in the treatment of allergic rhinitis. Drug Saf. 2003;26:863–93.

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Mosges R. Local and systemic safety of intranasal corticosteroids. J Investig Allergol Clin Immunol. 2012;22:1–12.

    PubMed  CAS  Google Scholar 

  • Schulz C, Paulus K, Jöhren O, et al. Intranasal leptin reduces appetite and induces weight loss in rats with diet-induced obesity (DIO). Endocrinology. 2012;153:143–53.

    Article  PubMed  CAS  Google Scholar 

  • Seju U, Kumar A, Sawant KK. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater. 2011;7:4169–76.

    Article  PubMed  CAS  Google Scholar 

  • Shao Z, Park GB, Krishnamoorthy R, et al. The physicochemical properties, plasma enzymatic hydrolysis, and nasal absorption of acyclovir and its 2′-ester prodrugs. Pharm Res. 1994;11:237–42.

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Mukkur TK, Benson HA, et al. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci. 2009;98:812–43.

    Article  PubMed  CAS  Google Scholar 

  • Shore N, Cookson MS, Gittelman MC. Long-term efficacy and tolerability of once-yearly histrelin acetate subcutaneous implant in patients with advanced prostate cancer. BJU Int. 2012;109:226–32.

    Article  PubMed  CAS  Google Scholar 

  • Simon JK, Ramirez K, Cuberos L, et al. Mucosal IgA responses in healthy adult volunteers following intranasal spray delivery of a live attenuated measles vaccine. Clin Vaccine Immunol. 2011;18:355–61.

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Singh A, Madhav NV. Nasal cavity: a promising transmucosal platform for drug delivery and research approaches from nasal to brain targeting. J Drug Deliv Ther. 2012;2:22–33.

    CAS  Google Scholar 

  • Steyn D, du Plessis L, Kotzé A. Nasal delivery of recombinant human growth hormone: in vivo evaluation with Pheroid technology and N-trimethyl chitosan chloride. J Pharm Pharm Sci. 2010;13:263–73.

    PubMed  CAS  Google Scholar 

  • Stoker DG, Reber KR, Waltzman LS, et al. Analgesic efficacy and safety of morphine-chitosan nasal solution in patients with moderate to severe pain following orthopedic surgery. Pain Med. 2008;9:3–12.

    Article  PubMed  Google Scholar 

  • Suh JD, Kennedy DW. Treatment options for chronic rhinosinusitis. Proc Am Thorac Soc. 2011;8:132–40.

    Article  PubMed  CAS  Google Scholar 

  • Sur D, Scandale S. Treatment of allergic rhinitis. Am Fam Physician. 2010;81:1440–6.

    PubMed  Google Scholar 

  • Takeuchi S, Minoura H, Shibahara T, et al. A prospective randomized comparison of routine buserelin acetate and a decreasing dosage of nafarelin acetate with a low-dose gonadotropin-releasing hormone agonist protocol for in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2001;76:532–7.

    Article  PubMed  CAS  Google Scholar 

  • Tas C, Ozkan CK, Savaser A, et al. Nasal administration of metoclopramide from different dosage forms: in vitro, ex vivo, and in vivo evaluation. Drug Deliv. 2009;16:167–75.

    Article  PubMed  CAS  Google Scholar 

  • Teshima D, Yamauchi A, Makino K, et al. Nasal glucagon delivery using microcrystalline cellulose in healthy volunteers. Int J Pharm. 2002;233:61–6.

    Article  PubMed  CAS  Google Scholar 

  • Thorne RG, Frey 2nd WH. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet. 2001;40:907–46.

    Article  PubMed  CAS  Google Scholar 

  • Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127:481–96.

    Article  PubMed  CAS  Google Scholar 

  • Thorne RG, Hanson LR, Ross TM, et al. Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience. 2008;152:785–97.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari S, Verma SK, Agrawal GP, et al. Viral protein complexed liposomes for intranasal delivery of hepatitis B surface antigen. Int J Pharm. 2011;413:211–9.

    Article  PubMed  CAS  Google Scholar 

  • Treschan TA, Peters J. The vasopressin system: physiology and clinical strategies. Anesthesiology. 2006;105:599–612.

    Article  PubMed  CAS  Google Scholar 

  • Tribble D, Kaminski R, Cantrell J, et al. Safety and immunogenicity of a shigella flexneri 2a Invaplex 50 intranasal vaccine in adult volunteers. Vaccine. 2010;28:6076–85.

    Article  PubMed  CAS  Google Scholar 

  • Tunn UW. A 6-month depot formulation of leuprolide acetate is safe and effective in daily clinical practice: a non-interventional prospective study in 1273 patients. BMC Urol. 2011;11:15.

    Article  PubMed  CAS  Google Scholar 

  • Tutykhina IL, Logunov DY, Shcherbinin DN, et al. Development of adenoviral vector-based mucosal vaccine against influenza. J Mol Med (Berl). 2011;89:331–41.

    Article  CAS  Google Scholar 

  • Tuvemo T, Gustafsson J, Proos LA. Suppression of puberty in girls with short-acting intranasal versus subcutaneous depot GnRH agonist. Horm Res. 2002;57:27–31.

    Article  PubMed  CAS  Google Scholar 

  • Tveita T, Thoner J, Klepstad P, et al. A controlled comparison between single doses of intravenous and intramuscular morphine with respect to analgesic effects and patient safety. Acta Anaesthesiol Scand. 2008;52:920–5.

    Article  PubMed  CAS  Google Scholar 

  • Uchida M, Katoh T, Mori M, et al. Intranasal administration of milnacipran in rats: evaluation of the transport of drugs to the systemic circulation and central nervous system and the pharmacological effect. Biol Pharm Bull. 2011;34:740–7.

    Article  PubMed  CAS  Google Scholar 

  • Uemura N, Onishi T, Mitaniyama A, et al. Bioequivalence and rapid absorption of zolmitriptan nasal spray compared with oral tablets in healthy Japanese subjects. Clin Drug Investig. 2005;25:199–208.

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan S, Williamson P, Clearie K, et al. Fluticasone reverses oxymetazoline-induced tachyphylaxis of response and rebound congestion. Am J Respir Crit Care Med. 2010;182:19–24.

    Article  PubMed  CAS  Google Scholar 

  • Van de Walle J, Stockner M, Raes A, et al. Desmopressin 30 years in clinical use: a safety review. Curr Drug Saf. 2007;2:232–8.

    Article  Google Scholar 

  • Van de Walle J, Van Herzeele C, Raes A. Is there still a role for desmopressin in children with primary monosymptomatic nocturnal enuresis?: a focus on safety issues. Drug Saf. 2010;33:261–71.

    Article  PubMed  Google Scholar 

  • Ved PM, Kim K. Poly(ethylene oxide/propylene oxide) copolymer thermo-reversible gelling system for the enhancement of intranasal zidovudine delivery to the brain. Int J Pharm. 2011;411:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Velasquez LS, Shira S, Berta AN, et al. Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. Vaccine. 2011;29:5221–31.

    Article  PubMed  CAS  Google Scholar 

  • Veronesi MC, Kubek DJ, Kubek MJ. Intranasal delivery of neuropeptides. Methods Mol Biol. 2011;789:303–12.

    Article  PubMed  CAS  Google Scholar 

  • Vyas TK, Shahiwala A, Marathe S, et al. Intranasal drug delivery for brain targeting. Curr Drug Deliv. 2005a;2:165–75.

    Article  PubMed  CAS  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK, et al. Intranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targeting. J Drug Target. 2005b;13:317–24.

    Article  PubMed  CAS  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK, et al. Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. J Pharm Sci. 2006a;95:570–80.

    Article  PubMed  CAS  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK, et al. Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan. AAPS PharmSciTech. 2006b;7:E8.

    Article  PubMed  Google Scholar 

  • Wang SH, Kirwan SM, Abraham SN, et al. Stable dry powder formulation for nasal delivery of anthrax vaccine. J Pharm Sci. 2012;101:31–47.

    Article  PubMed  CAS  Google Scholar 

  • Wei SQ, Luo ZC, Qi HP, et al. High-dose vs low-dose oxytocin for labor augmentation: a systematic review. Am J Obstet Gynecol. 2010;203:296–304.

    Article  PubMed  CAS  Google Scholar 

  • Wells J. Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annu Rev Food Sci Technol. 2011;2:423–45.

    Article  PubMed  CAS  Google Scholar 

  • Westin U, Piras E, Jansson B, et al. Transfer of morphine along the olfactory pathway to the central nervous system after nasal administration to rodents. Eur J Pharm Sci. 2005;24:565–73.

    Article  PubMed  CAS  Google Scholar 

  • Westin UE, Boström E, Gråsjö J, et al. Direct nose-to-brain transfer of morphine after nasal administration to rats. Pharm Res. 2006;23:565–72.

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM. Gendicine: the first commercial gene therapy product. Hum Gene Ther. 2005;16:1014–5.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe TR, Bernstone T. Intranasal drug delivery: an alternative to intravenous administration in selected emergency cases. J Emerg Nurs. 2004;30:141–7.

    Article  PubMed  Google Scholar 

  • Wu Y, Wei W, Zhou M, et al. Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomaterials. 2012;33:2351–60.

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Dai W, Wang Z, et al. Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin Vaccine Immunol. 2011;18:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Hussain A, Bai S, et al. Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin. J Control Release. 2006;115:289–97.

    Article  PubMed  CAS  Google Scholar 

  • Yates R, Sörensen J, Bergström M, et al. Distribution of intranasal 11C-zolmitriptan assessed by positron emission tomography. Cephalalgia. 2005;25:1103–9.

    Article  PubMed  CAS  Google Scholar 

  • Youn YS, Jeon JE, Chae SY, et al. PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagon-like peptide-1 in type 2 diabetic db/db mice. Diabetes Obes Metab. 2008;10:343–6.

    Article  PubMed  CAS  Google Scholar 

  • Zaki NM, Mortada ND, Awad GA, et al. Rapid-onset intranasal delivery of metoclopramide hydrochloride Part II: safety of various absorption enhancers and pharmacokinetic evaluation. Int J Pharm. 2006;327:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Zaman M, Simerska P, Toth I. Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response. Curr Drug Deliv. 2010;7:118124.

    Article  Google Scholar 

  • Zhang YJ, Ma CH, Lu WL, et al. Permeation-enhancing effects of chitosan formulations on recombinant hirudin-2 by nasal delivery in vitro and in vivo. Acta Pharmacol Sin. 2005;26:1402–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Branch DW, Ramirez MM, et al. Oxytocin regimen for labor augmentation, labor progression, and perinatal outcomes. Obstet Gynecol. 2011;118:249–56.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank to Fundação para a Ciência e a Tecnologia (Portugal) for the postdoctoral (SFRH/BPD/46826/2008) and doctoral grants (SFRH/BD/64895/2009; SFRH/BD/69378/2010). The authors also thank to POPH (Programa Operacional Potencial Humano) which is co-funded by FSE (Fundo Social Europeu), União Europeia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amílcar Falcão PharmD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Serralheiro, A., Alves, G., Sousa, J., Fortuna, A., Falcão, A. (2013). Nose as a Route for Drug Delivery. In: Önerci, T. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37250-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37250-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37249-0

  • Online ISBN: 978-3-642-37250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics