Skip to main content

Mining Graphs of Prescribed Connectivity

  • Conference paper
  • 1156 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 348))

Abstract

Many real-life data sets, such as social, biological and communication networks are naturally and easily modeled as large labeled graphs. Finding patterns of interest in these graphs is an important task, but due to the nature of the data not all of the patterns need to be taken into account. Intuitively, if a pattern has high connectivity, it implies that there is a strong connection between data items. In this paper, we present a novel algorithm for finding frequent graph patterns with prescribed connectivity in large single-graph data sets. We also show how this algorithm can be adapted to a dynamic environment where the data changes over time. We prove that the suggested algorithm generates no more candidate graphs than any other algorithm whose graph extension procedure we employ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bixby, R.E.: The minimum number of edges and vertices in a graph with edge connectivity n and m n-bonds. Networks 5, 253–298 (1975)

    MathSciNet  MATH  Google Scholar 

  2. De Vitis, A.: The cactus representation of all minimum cuts in a weighted graph. Technical Report 454, IASI-CNR (1997)

    Google Scholar 

  3. Dinits, E.A., Karzanov, A.V., Lomonosov, M.V.: On the structure of a family of minimal weighted cuts in a graph. In: Fridman, A.A. (ed.) Studies in Discrete Optimization, pp. 290–306. Nauka, Moscow (1976)

    Google Scholar 

  4. Fiedler, M., Borgelt, C.: Support computation for mining frequent subgraphs in a single graph. In: International Workshop on Mining and Learning with Graphs (2007)

    Google Scholar 

  5. Fleischer, L.: Building Chain and Cactus Representations of All Minimum Cuts from Hao-Orlin in the Same Asymptotic Run Time. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 294–309. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Indust. Appl. Math. 9(4), 551–570 (1991)

    MathSciNet  Google Scholar 

  7. Horváth, T., Ramon, J.: Efficient frequent connected subgraph mining in graphs of bounded tree-width. Theor. Comput. Sci. 411(31-33), 2784–2797 (2010)

    Article  MATH  Google Scholar 

  8. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. Journal of the ACM 43(4), 601–640 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karger, D.R., Panigrahi, D.: A near-linear time algorithm for constructing a cactus representation of minimum cuts. In: SODA 2009, pp. 246–255 (2009)

    Google Scholar 

  10. Karzanov, A.V., Timofeev, E.A.: Efficient algorithms for finding all minimal edge cuts of a nonoriented graph. Cybernetics 22, 156–162 (1986); Translated from Kibernetika 2, 8–12 (1986)

    Article  MATH  Google Scholar 

  11. Kuramochi, M., Karypis, G.: Frequent Subgraph Discovery. In: ICDM 2001, pp. 313–320 (2001)

    Google Scholar 

  12. Nagamochi, H., Kameda, T.: Canonical cactus representation for minimum cuts. Japan Journal of Industrial Appliel Mathematics 11, 343–361 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Papadopoulos, A., Lyritsis, A., Manolopoulos, Y.: Skygraph: an algorithm for important subgraph discovery in relational graphs. Journal of Data Mining and Knowledge Discovery 17(1) (2008)

    Google Scholar 

  14. Seeland, M., Girschick, T., Buchwald, F., Kramer, S.: Online Structural Graph Clustering Using Frequent Subgraph Mining. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 213–228. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Yan, X., Zhou, X.J., Han, J.: Mining Closed Relational Graphs with Connectivity Constraints. In: ICDE 2005, pp. 357–358 (2005)

    Google Scholar 

  16. Zhang, S., Li, S., Yang, J.: GADDI: distance index based subgraph matching in biological networks. In: EDBT 2009, pp. 192–203 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vanetik, N. (2013). Mining Graphs of Prescribed Connectivity. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2011. Communications in Computer and Information Science, vol 348. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37186-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37186-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37185-1

  • Online ISBN: 978-3-642-37186-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics