Skip to main content

Biomechanical Model of the Knee to Estimate the Musculotendinous Forces during an Isometric Extension

  • Conference paper
Design and Modeling of Mechanical Systems

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 6390 Accesses

Abstract

In this work, we present an improved biomechanical model of the knee and the muscle group involved to ensure the movement of extension of the knee joint, under an external load. The problem of redundancy is solved by presenting the problem as an optimization procedure. In order to identify the best objective function to be optimized, we carried out some experimental tests during which measurements of some tendon forces were performed using EMG sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An, K.N., Kwak, B.M., Chao, E.Y., Morrey, B.F.: Determination of muscle and joint forces: a new technique to solve the indeterminate problem. Journal of Biomechanical Engineering 106, 364–367 (1984)

    Article  Google Scholar 

  • Jinha, A., Ait-Haddou, R., Herzog, W.: Predictions of co-contraction depend critically on degrees of freedom in the musculoskeletal model. Journal of Biomechanics 39(6), 1145–1152 (2006)

    Article  Google Scholar 

  • Walmsley, B., Hodgson, J., Burke, R.: Forces produced by medial gastroenemius and soleus muscles during locomotion in freely moving cats. Journal of Neurophysiology 41, 1203–1216 (1978)

    Google Scholar 

  • Herzog, W., Leonard, T.: Validation of optimization models that estimate the forces exerted by synergistic muscles. Journal of Biomechanics 24, 31–39 (1991)

    Article  Google Scholar 

  • Dennerlein, J.T., Diao, E., Mote, C.D., Rempel, D.M.: Tensions of the flexor digitorum superficialis are higher than a current model predicts. Journal of Biomechanics 31, 295–301 (1998)

    Article  Google Scholar 

  • Kursa, K., Diao, E., Lattanza, L., Rempel, D.: In vivo forces generated by finger flexor muscles do not depend on the rate of fingertip loading during an isometric task. Journal of Biomechanics 38(11), 2288–2293 (2005)

    Article  Google Scholar 

  • Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences 126(843), 136–195 (1938)

    Article  Google Scholar 

  • Scott, S.H., Winter, D.A.: A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force. Journal of Biomechanics 24, 163–167 (1991)

    Article  Google Scholar 

  • Valero-Cuevas, F.J., Zajac, F.E., Burgar, C.G.: Large indexfingertip forces are produced by subject-independent patterns of muscle excitation. Journal of Biomechanics 31, 693–703 (1998)

    Article  Google Scholar 

  • Sereig, A., Arvikar, R.: Biomechanical analysis of the musculoskeletal structure for medicine and sports, 1st edn. Hemisphere Publishing Corporation, New York (1989)

    Google Scholar 

  • Crowninschield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981)

    Article  Google Scholar 

  • Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978)

    Article  Google Scholar 

  • Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G.: Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10, 361–374 (1999)

    Article  Google Scholar 

  • Edith, M.A., Samuel, R.W., Richard, L.L., Scott, L.D.: A Model of the Lower Limb for Analysis of Human Movement. Ann. Biomed. Eng. 38(2), 269–279 (2010), doi:10.1007/s10439-009-9852-5

    Article  Google Scholar 

  • Louis, N., Gorce, P.: Upper limb muscle forces during a simple reach-to-grasp movement: a comparative study. Med. Biol. Eng. Comput. 47, 1173–1179 (2009)

    Article  Google Scholar 

  • Challis, J.H.: Producing physiologically realistic individual muscle force estimations by imposing constraints when using optimization techniques. Medical Engineering and Physics 19, 253–261 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Bennour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bennour, S., Zarrouk, N., Dogui, M., Romdhane, L., Merlet, JP. (2013). Biomechanical Model of the Knee to Estimate the Musculotendinous Forces during an Isometric Extension. In: Haddar, M., Romdhane, L., Louati, J., Ben Amara, A. (eds) Design and Modeling of Mechanical Systems. Lecture Notes in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37143-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37143-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37142-4

  • Online ISBN: 978-3-642-37143-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics