Skip to main content

Evolutionary Breeding and Climate Change

  • Chapter
  • First Online:
Genomics and Breeding for Climate-Resilient Crops

Abstract

The genetic uniformity within, and typified by, most monocultural cereal-based systems has been shown to limit the crops’ capacity to evolve in response to adverse environmental conditions, thereby leading to a possible decrease in the yield stability of the cropping system. Deployment of significantly increased crop diversity across the global landscape has the potential to reduce the progress of crop epidemics, optimize yield stability, and positively enhance crop resilience in the ever-changing visage of climate-induced stress. One method of increasing genetic diversity within cereal crop populations is through evolutionary breeding (EB). In EB populations of self-pollinating cereals, natural selection acts upon the heterogeneous mixture of genotypes over generations and across environments and traits positively correlated to reproductive capacity increase over time. Crop populations with enhanced genetic diversity mimic natural ecological communities, which are better equipped to adapt to future unpredictable temporal climate shifts than are monocultures. Evolutionary participatory breeding merges the EB method with farmer selection to develop high-yielding, disease-resistant cultivars while maintaining a high degree of genetic variation to allow for adaptability to fluctuations in environmental conditions. The EB method can contribute to the development of cropping systems with greater resilience and yield stability in the climate change era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW (1961) Relationship between genetic diversity and consistency of performance in different environments. Crop Sci 1:127–133

    Article  Google Scholar 

  • Allard RW (1990) Future directions in plant genetics, evolution, and breeding. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, MA, pp 1–23

    Google Scholar 

  • Allard RW (1999) History of plant population genetics. Annu Rev Genet 33:1–27

    Article  PubMed  CAS  Google Scholar 

  • Bachmann L (2010) Farmer-led participatory plant breeding. Methods and impacts. The MASIPAG farmers Network in the Philippines. Institut National de la Recherche Agronomique (INRA), Paris, pp 119–122

    Google Scholar 

  • Bänziger M, Cooper M (2001) Breeding for low input conditions and consequences for participatory plant breeding examples from tropical maize and wheat. Euphytica 122:503–519

    Article  Google Scholar 

  • Barker S (1998) The temporary breakdown of mlo-resistance in barley to powdery mildew. PhD Dissertation, University of Oxford, Oxford

    Google Scholar 

  • Barnett C, Hossell J, Perry M, Procter C, Hughes G (2006) A handbook of climate trends across Scotland. Scotland & Northern Ireland Forum for Environmental Research (SNIFFER): SNIFFER Project CC03

    Google Scholar 

  • Ceccarelli S, Grando S, Tutwiler R, Baha J, Martini AM, Salahieh H, Goodchild A, Michael M (2000) A methodological study on participatory barley breeding. I. Selection phase. Euphytica 111:91–104

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Bailey E, Amri A, El-Felah M, Nassif F, Rezgui S, Yahyaoui A (2001) Farmer participation in barley breeding in Syria, Morocco and Tunisia. Euphytica 122:521–536

    Article  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Article  Google Scholar 

  • Cheng D, Wang G, Chen B, Wei X (2006) Positive interactions: crucial organizers in a plant community. J Integr Plant Biol 48:128–136

    Article  Google Scholar 

  • Corte H, Ramalhol M, Goncalves F, Abreu A (2002) Natural selection for grain yield in dry bean populations bred by the bulk method. Euphytica 123:387–393

    Article  Google Scholar 

  • Cowger C, Mundt C (2002) Effects of wheat cultivar mixtures on epidemic progression of Septoria tritici Blotch and pathogenecity. Phytopathology 92:617–623

    Article  PubMed  Google Scholar 

  • Cowger C, Weisz R (2008) Winter wheat blends (mixtures) produce a yield advantage in North Carolina. Agron J 100:169–177

    Article  Google Scholar 

  • Danquah E, Barret J (2002) Grain yield in composite cross five of barley: effects of natural selection. J Agric Sci 138:171–176

    Article  Google Scholar 

  • Degago Y, Caviness C (1987) Seed yield of soybean bulk populations grown for 10 to 18 years in two environments. Crop Sci 27:207–210

    Article  Google Scholar 

  • Doring T, Knapp S, Kovacs G, Murphy K, Wolfe M (2011) Evolutionary plant breeding in cereals - into a new era. Sustainability 3:1944–1971

    Article  Google Scholar 

  • Dyck PL, Johnson R (1983) Temperature sensitivity of genes for resistance in wheat to Puccinia recondita. Can J Plant Pathol 5:229–234

    Article  Google Scholar 

  • Finckh MR, Mundt C (1992) Plant competition and disease in genetically diverse wheat populations. Oecologica 91:82–92

    Google Scholar 

  • Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, Mundt CC, Munk L, Nadziak J, Newton AC, Cd V-P, Wolfe MS (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813–837

    Article  Google Scholar 

  • Frey K, Maldonado U (1967) Relative productivity of homogeneous and heterogeneous oat cultivars in optimum and suboptimum environments. Crop Sci 7:532–535

    Article  Google Scholar 

  • Garret K, Mundt C (1999) Epidemiology in mixed host populations. Phytopathology 89:984–990

    Article  Google Scholar 

  • Garrett K, Dendy S, Frank E, Rouse M, Travers S (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    Article  PubMed  CAS  Google Scholar 

  • Gerecheter-Amitai ZK, Sharp EL, Reinhold M (1984) Temperature-sensitive genes for resistance to Pucinia striiformis in Triticum dicoccoides. Euphytica 33:665–672

    Article  Google Scholar 

  • Goodman B, Newton AC (2005) Effects of drought stress and its sudden relief on free radical process in barley. J Sci Food Agric 85:47–53

    Article  CAS  Google Scholar 

  • Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838

    Article  PubMed  CAS  Google Scholar 

  • Hariri D, Fouchard M, Prud’homme H (2001) Incidence of soil-borne wheat mosaic virus in mixtures of susceptible and resistant wheat cultivars. Eur J Plant Pathol 107:625–631

    Article  Google Scholar 

  • Harlan HV, Martini ML (1929) A composite hybrid mixture. J Am Soc Agron 21:407–409

    Google Scholar 

  • Harlan HV, Martini ML, Stevens H (1940) A study of methods in barley breeding. Techn Bull USDA 720:26

    Google Scholar 

  • Hauggaard-Nielsen H, Jensen E (2005) Facilitative root interactions in intercrops. Plant Soil 274:237–250

    Article  CAS  Google Scholar 

  • Hoad S, Wilson G (2006) Influence of plant population density, nitrogen fertiliser rate and variety on Rhynchosporium secalis in winter barley. In: Heilbronn T (ed) Proceedings of crop protection in Northern Britain 2006. ACPNB, Dundee, pp 185–190

    Google Scholar 

  • Hockett E, Eslick R, Qualset C, Dubbs A, Stewart V (1983) Effects of natural selection in advanced generations of Barley composite cross II. Crop Sci 23:752–756

    Article  Google Scholar 

  • Hooper D, Chapin F, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton J, Lodge D, Loreau M, Naeem S, Schmid B, Setala H, Symstad A, Vandermeer J, Wardle D (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Huang R, Kranz J, Welz H (1994) Selection of pathotypes of Erysiphe graminis f.sp. hordei in pure and mixed stands of spring barley. Plant Pathol 43:658–670

    Article  Google Scholar 

  • Hughes A, Inouye B, Johnson M, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Jain SK (1961) Studies on the breeding of self-pollinating cereals. Euphytica 10:315–324

    Article  Google Scholar 

  • Jain SK, Qualset C (1975) New development in the evaluation and theory of bulk populations. In: Gaul H (ed) Barley genetics III. Proceedings of 3rd International Barley Genetics Symposium. Verlag Karl Theimig, Munich, pp 739–749

    Google Scholar 

  • Jeger M, Griffiths E, Jones D (1981a) Effects of cereal cultivar mixtures on disease epidemics caused by splach-dispersed pathogens. In: Jenkyn J, Plumb R (eds) Strategies for control of cereal disease. Blackwell Science, Oxford, pp 81–88

    Google Scholar 

  • Jeger M, Jones D, Griffiths E (1981b) Disease progress of non-specialised fungal pathogens in intraspecific mixed stands of cereal cultivars. II. Experiments. Ann Appl Biol 98:187–198

    Article  Google Scholar 

  • Jones ERL (2003) Brown rust of wheat. United Kingdom Cereal Pathogen Virulence Survey 2002 Annual Report, pp 19–31

    Google Scholar 

  • Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Change 13:51–59

    Article  Google Scholar 

  • Karjalainen R, Peltonensaino P (1993) Effect of oat cultivar mixtures on disease progress and yield reduction caused by barley yellow dwarf virus. J Plant Dis Prot 100:58–68

    Google Scholar 

  • Long L, Li S, Sun J, Zhou L, Bao X, Zhang H, Zhang F (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196

    Article  Google Scholar 

  • Mak C, Harvey B (1982) Exploitable genetic variation in composite bulk populations of barley. Euphytica 31:85–92

    Article  Google Scholar 

  • Martens J, McKenzie R, Green G (1967) Thermal stability of stem rust resistance in oat seedlings. Can J Bot 45:451–458

    Article  Google Scholar 

  • Medina CP (2012) Rice: crop breeding using farmer-led participatory plant breeding, Chap 11. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley-Blackwell, Oxford, pp 191–202

    Google Scholar 

  • Mundt C, Browning J (1985) Development of crown rust epidemics in genetically diverse oat populations: effect of genotype unit area. Phytopathology 75:607–610

    Article  Google Scholar 

  • Murphy K, Lammer D, Lyon S, Carter B, Jones S (2005) Breeding for organic and low-input farming systems: an evolutionary-participatory breeding method for inbred cereal grains. Renew Agric Food Syst 20:48–55

    Article  Google Scholar 

  • Newton AC, Young I (1996) Temporary partial breakdown of Mlo-resistance in spring barley by the sudden relief of soil water stress. Plant Pathol 45:970–974

    Article  Google Scholar 

  • Newton AC, Begg GS, Swanston JS (2009) Deployment of diversity for enhanced crop function. Ann Appl Biol 154:309–322

    Article  Google Scholar 

  • Oerke E (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Ostegaard H, Kristensen K, Jensen J (2005) Stability of variety mixtures in spring barley. In: Proceedings of a workshop on organic plant breeding strategies and the use of molecular markers, Driebergen, Netherlands, pp 28–30

    Google Scholar 

  • Paillard S, Goldringer I, Enjalbert J, Doussinault G, De Vallavielle-Pope C, Brabant P (2000) Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic management. I. Is specific seedling resistance selected? Theor Appl Genet 101:449–456

    Article  CAS  Google Scholar 

  • Pangga I, Hannan J, Chakraborty S (2011) Pathogen dynamics in a crop canopy and their evolution under changing climate. Plant Pathol 60:70–81

    Article  Google Scholar 

  • Parry M, Rosenzweig C, Livermore M (2005) Climate change, global food supply and risk of hunger. Phil Trans R Soc B Biol Sci 360:2125–2138

    Article  Google Scholar 

  • Patel J, Reinbergs E, Mather D, Choo T, Sterling J (1987) Natural selection in a double-haploid mixture and a composite cross of barley. Crop Sci 27:474–479

    Article  Google Scholar 

  • Peltonensaino P, Karjalainen R (1991) Agronomic evaluation of growing oat cultivar mixtures under various stress conditions in Finland. Agric Scand 41:47–53

    Article  Google Scholar 

  • Phillips SL, Wolfe MS (2005) Evolutionary plant breeding for low input systems. J Agric Sci 143:245–254

    Article  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51

    Article  PubMed  CAS  Google Scholar 

  • Qualset C (1968) Population structure and performance in wheat. In: Finlay K, Shepherd K (eds) Proceedings of the 3rd international wheat genetics symposium. Butterworths Australian Academy of Science, London, p 397

    Google Scholar 

  • Ramage RT (1987) A history of barley breeding methods. Plant Breed Rev 5:95–138

    Google Scholar 

  • Rasmusson D, Beard B, Johnson F (1967) Effect of natural selection on performance of a barley population. Crop Sci 7:543

    Article  Google Scholar 

  • Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138

    Article  Google Scholar 

  • Silverton J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Smithson J, Lenne J (1996) Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann Appl Biol 128:127–158

    Article  Google Scholar 

  • Soliman K, Allard R (1991) Grain yield of composite cross populations of barley: effects of natural selection. Crop Sci 31:705–708

    Article  Google Scholar 

  • Stewart K (2002) Abiotic stress and mlo-resistance breakdown to barley powdery mildew. PhD Dissertation, University of Oxford, Oxford

    Google Scholar 

  • Sthapit BR, Joshi KD, Witcombe JR (1996) Farmer participatory crop improvement. III. Participatory plant breeding, a case study for rice in Nepal. Exp Agric 32:479–496

    Article  Google Scholar 

  • Suneson CA (1956) An evolutionary plant breeding method. Agron J 48:188–191

    Article  Google Scholar 

  • Sutherst R, Baker R, Coakley S, Harrington R, Kriticos D, Scherm H (2007) Pests under global change: meeting your future landlords? In: Canadell J (ed) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 211–225

    Chapter  Google Scholar 

  • Swanston J, Newton A (2004) Do components of barley variety mixtures converge for malting quality attributes. In: Popisil A, Soucek A, Janikova J (eds) Proceedings of 9th international barley genetics symposium. Agricultural Research Institute, Kromeriz, pp 505–510

    Google Scholar 

  • Thapa DB, Mudwari A, Basnet RK, Sharma S, Ortiz-Ferrara G, Sharma B, Murphy K (2009) Participatory varietal selection of wheat for micro-niches of Kathmandu valley. J Sustain Agric 33:745–756

    Article  Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Verboom J, Schippers P, Cormont A, Sterk M, Vos C, Opdam P (2010) Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria. Landsc Ecol 25:1289–1298

    Article  Google Scholar 

  • von Braun J (2007) The world food situation: new driving forces and required actions. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Witcombe JR, Joshi A, Goyal SN (2003) Participatory plant breeding in maize: a case study from Gujarat, India. Euphytica 130:413–422

    Article  Google Scholar 

  • Wolfe M (1985) The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu Rev Phytopathol 23:251–273

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew T, Teng P, Wang Z, Mundt C (2000) Genetic diversity and disease control in rice. Nature 406:718–722

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murphy, K.M., Carter, A.H., Jones, S.S. (2013). Evolutionary Breeding and Climate Change. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37045-8_9

Download citation

Publish with us

Policies and ethics