Skip to main content

Genetic Engineering for Tolerance to Climate Change-Related Traits

  • Chapter
  • First Online:
Book cover Genomics and Breeding for Climate-Resilient Crops

Abstract

Climate change is expected to introduce new challenges for sustainable crop production worldwide. High temperature, less water availability, and emergence of new pests and pathogens calls for changing strategies and using biotechnological interventions to meet these challenges to sustaining food supply. Engineering biotic and abiotic stress tolerance will require concerted and combined efforts by plant breeders and biotechnologists alike. Several genes have been identified to have potential in mitigating climate change effects. These can be broadly classified as single-action genes and multiple action genes. Single action genes include osmoprotectants, detoxifying, LEA, HSP, ANPs, and ion transporters which have incremental roles in providing abiotic stress tolerance. Multiaction regulatory genes provide an attractive strategy to improve crop plants as these genes activate a cascade of genes which act together to enhance stress tolerance. CBF/DREB, SNAC, MYB, HSF, and AREB are some candidate genes of this category. Signal transduction genes such as osmosensors, AHK1, SNF1-related kinases are potential candidate genes for engineering stress tolerance in the near future. For insect resistance cry genes will remain the ideal choice however, engineering biotic resistance will involve new technologies such as RNAi and micro RNAs for combating insects and pests. Regulatory genes and genes involved in signal transduction will assume great importance in developing cultivars adapted to the threats of climate change. Here we review the target traits and potential genes for engineering stress tolerance in crop plants to meet climate change challenges for food production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    PubMed  CAS  Google Scholar 

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic-virus coat protein gene. Science 232:738–743

    PubMed  CAS  Google Scholar 

  • Ainsworth EA, Rogers A, Leakey AD (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19

    PubMed  CAS  Google Scholar 

  • Alcazar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrian M, Tiburcio AF, Altabella T (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552

    PubMed  CAS  Google Scholar 

  • Alig RJ, Adams DM, McCarl BA (2002) Projecting impacts of global climate change on the US forest and agriculture sectors and carbon budgets. For Ecol Manag 169:3–14

    Google Scholar 

  • Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol 57:271–283

    PubMed  CAS  Google Scholar 

  • Anuradha TS, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vascoular Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    PubMed  CAS  Google Scholar 

  • Atkinson HJ, Urwin PE, McPherson MJ (2003) Engineering plants for nematode resistance. Annu Rev Phytopathol 41:615–639

    PubMed  CAS  Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142

    PubMed  CAS  Google Scholar 

  • Atkinson HJ, Lilley CJ, Urwin PE (2012) Strategies for transgenic nematode control in developed and developing world crops. Curr Opin Biotechnol 23:251–256

    PubMed  CAS  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    PubMed  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 21:1–36

    Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DF, Jenson RG (1995) Adaptation to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Bordás M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res 5:1–10

    Google Scholar 

  • Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    PubMed  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, Rycke RD, Botterman J, Sybesma C, van Montagu M, Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    PubMed  CAS  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    PubMed  CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    PubMed  CAS  Google Scholar 

  • Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops: a review. J Environ Qual 35:1633–1658

    PubMed  CAS  Google Scholar 

  • Chan YL, Yang AH, Chen JT, Yeh KW, Chan MT (2010) Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Rep 29:231–238

    PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    PubMed  Google Scholar 

  • Chen W, Singh KB (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19:667–677

    PubMed  CAS  Google Scholar 

  • Chen BJ, Wang Y, Hu YL, Wu Q, Lin ZP (2005) Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia. Plant Sci 168:493–500

    CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Chitkowski RL, Turnipseed SG, Sullivan MJ, Bridges WC (2003) Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Econ Entomol 96:755–762

    PubMed  CAS  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426

    PubMed  CAS  Google Scholar 

  • Cober ER, Rioux S, Rajcan I, Donaldson PA, Simmonds DH (2003) Partial resistance to white mold in a transgenic soybean line. Crop Sci 43:92–95

    Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Penas G, Eritja R, Tharreau D, del Pozo AM, Messeguer J, San Segundo B (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259

    PubMed  CAS  Google Scholar 

  • Collinge DB, Lund OS, Thordal-Christensen H (2008) What are the prospects for genetically engineered, disease resistant plants? Eur J Plant Pathol 121:217–231

    CAS  Google Scholar 

  • Collinge DB, Jorgensen HJL, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    PubMed  CAS  Google Scholar 

  • Corbin DR, Grebenok RJ, Ohnmeiss TE, Greenplate JT, Purcell JP (2001) Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol 126:1116–1128

    PubMed  CAS  Google Scholar 

  • Cortina C, Culiánez-Maciá F (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    CAS  Google Scholar 

  • Crickmore N (2006) Beyond the spore - past and future developments of Bacillus thuringiensis as a biopesticide. J Appl Microbiol 101:616–619

    PubMed  CAS  Google Scholar 

  • Dasgupta I, Malathi VG, Mukherjee SK (2003) Genetic engineering for virus resistance. Curr Sci 84:341–354

    CAS  Google Scholar 

  • Datta K, Tu JM, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    PubMed  CAS  Google Scholar 

  • Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1 controls xylem retrieval of Na+ in Arabidopsis. Plant Cell Environ 30:497–507

    PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Google Scholar 

  • Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61:219–224

    PubMed  CAS  Google Scholar 

  • Dill GM, Padgette SR, Jacob CA (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64:326–331

    PubMed  CAS  Google Scholar 

  • Dingenen RV, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43(3):604–618

    Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531

    PubMed  CAS  Google Scholar 

  • Dong C, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    PubMed  CAS  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    PubMed  CAS  Google Scholar 

  • Duke SO (2006) The use of transgenes for weed management. J Plant Dis Prot 20:3–10

    Google Scholar 

  • Dure L III (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    PubMed  CAS  Google Scholar 

  • Fang J, Xu XL, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen ZC (2007) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956–961

    PubMed  CAS  Google Scholar 

  • FAOSTAT (2011) http://faostat.fao.org/

  • Fermin G, Inglessis V, Garboza C, Rangel S, Dagert M, Gonsalves D (2004) Engineered resistance against Papaya ring spot virus in Venezuelan transgenic papayas. Plant Dis 88:516–522

    Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28(8):997–1011

    CAS  Google Scholar 

  • Foissac X, Thi Loc N, Christou P, Gatehouse AM, Gatehouse JA (2000) Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46:573–583

    PubMed  CAS  Google Scholar 

  • Frumhoff PC, McCarthy JJ, Melillo JM, Moser SC, Wuebbles DJ (2007) Confronting climate change in the U.S. Northeast: science, impacts and solutions (Synthesis Report of the Northeast Climate Impacts Assessment). Union of Concerned Scientists, Cambridge, MA, 146 p

    Google Scholar 

  • Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid activated protein kinases reveals critical roles in growth, reproduction and stress. Proc Natl Acad Sci USA 106:8380–8385

    PubMed  CAS  Google Scholar 

  • Fukai S, Cooper M (1995) Developing resistant cultivars using physiomorphological traits in rice. Field Crops Res 40:67–86

    Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) ABA-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    PubMed  CAS  Google Scholar 

  • Gan JB (2004) Risk and damage of southern pine beetle outbreaks under global climate change. For Ecol Manag 191:61–71

    Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YC, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    PubMed  CAS  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    PubMed  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    PubMed  CAS  Google Scholar 

  • Gatehouse JA (2011) Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr Protein Pept Sci 12:409–416

    PubMed  CAS  Google Scholar 

  • Germain V, Ricard B, Raymond P, Saglio PH (1997) The role of sugars, hexokinase, and sucrose synthase in the determination of hypoxically induced tolerance to anoxia in tomato roots. Plant Physiol 114:167–175

    PubMed  CAS  Google Scholar 

  • Giraud E, Ho LH, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610

    PubMed  CAS  Google Scholar 

  • Gisbert C, Rus AM, Bolarin MC, Lopez-Coronado M, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    PubMed  CAS  Google Scholar 

  • Golemboski DB, Lomonossoff GP, Zaitlin M (1990) Plants transformed with a tobacco mosaic-virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci USA 87:6311–6315

    PubMed  CAS  Google Scholar 

  • González A, Cabrera M, Henríquez MJ, Contreras RA, Morales B, Moenne A (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158(3):1451–1462

    PubMed  Google Scholar 

  • Gregory PJ, Johnson SN, Newton AC, Ingram JS (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838

    PubMed  CAS  Google Scholar 

  • Grover A, Minhas D (2000) Towards production of abiotic stress tolerant transgenic rice plants: issues, progress and future research needs. Proc Indian Natl Sci Acad B Rev Tracts Biol Sci 66:13–32

    Google Scholar 

  • Grover A, Kapoor A, Satya Lakshmi O, Agrawal S, Sahi C, Katiyar-Agarwal S, Agarwal M, Dubey H (2001) Understanding molecular alphabets of the plant abiotic stress responses. Curr Sci 80:206–216

    CAS  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831

    PubMed  CAS  Google Scholar 

  • Harper J, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    PubMed  CAS  Google Scholar 

  • Harrington R, Fleming R, Woiwood IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:233–240

    Google Scholar 

  • Hartikainen K, Nerg A-M, Kivimäenpää M, Kontunen-Soppela S, Mäenpää M, Oksanen E, Rousi M, Holopainen T (2009) Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature. Tree Physiol 29(1):53–66

    Google Scholar 

  • Hatfield J, Boote K, Fay P, Hahn L, Izaurralde C, Kimball BA, Mader T, Morgan J, Ort D, Polley W, Thomson A, Wolfe D (2008) Agriculture. In: Backlund P, Janetos A, Schimel D, Hatfield J, Boote K, Fay P, Hahn L, Izaurralde C, Kimball BA, Mader T, Morgan J, Ort D, Polley W, Thomson A, Wolfe D, Ryan MJ, Archer SR, Birdsey R, Dahm C, Heath L, Hicke J, Hollinger D, Huxman T, Okin G, Oren R, Randerson J, Schlesinger W, Lettenmaier D, Major D, Poff L, Running S, Hansen L, Inouye D, Kelly BP, Meyerson L, Peterson B, Shaw R (eds) The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States synthesis and assessment product 4.3. US Department of Agriculture, Washington, DC, pp 21–74

    Google Scholar 

  • Herman PL, Behrens M, Chakraborty S, Chrastil BM, Barycki J, Weeks DP (2005) A three-component dicamba O-demethylase from Pseudomonas maltophilia, strain DI-6. J Biol Chem 280:24759–24767

    PubMed  CAS  Google Scholar 

  • Herouet C, Esdaile DJ, Mallyon BA, Debruyne E, Schulz A, Currier T, Hendrickx D, van der Klis RJ, Rouan D (2005) Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Regul Toxicol Pharmacol 41:134–149

    PubMed  CAS  Google Scholar 

  • Heyne EG, Brunson AM (1940) Genetic studies of heat and drought tolerance in maize. J Am Soc Agron 32:803–814

    Google Scholar 

  • Hong-Bing Y (2011) Comparative study of osmoticum accumulation in wheat under osmotic and ionic stress. Afr J Agric Res 6(32):6661–6664

    Google Scholar 

  • Hossain MA, Maiti MK, Basu A, Sen S, Ghosh AK, Sen SK (2006) Transgenic expression of onion leaf lectin gene in Indian mustard offers protection against aphid colonization. Crop Sci 46:2022–2032

    CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK– SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    PubMed  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 35:12987–12992

    Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    PubMed  CAS  Google Scholar 

  • Huang Y, Nordeen RO, Di M, Owens LD, McBeath JH (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers disease resistance to Pseudomonas syringae pv tabaci. Phytopathology 87:494–499

    PubMed  CAS  Google Scholar 

  • Huang GZ, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    PubMed  CAS  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang SQ, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    CAS  Google Scholar 

  • ISAAA (2011) International Service for the Acquisition of Agri-biotech Applications. http://www.isaaa.org/

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949

    PubMed  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    PubMed  CAS  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    PubMed  CAS  Google Scholar 

  • Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384

    PubMed  CAS  Google Scholar 

  • Jongsman MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43:885–895

    Google Scholar 

  • Jouanin L, Bonade-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131:1–11

    CAS  Google Scholar 

  • Kalpana K, Maruthasalam S, Rajesh T, Poovannan K, Kumar KK, Kokiladevi E, Raja JAJ, Sudhakar D, Velazhahan R, Samiyappan R, Balasubramanian P (2006) Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Sci 170:203–215

    CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    PubMed  CAS  Google Scholar 

  • Kato-Noguchi H (2000) Evaluation of the importance of lactate for the activation of ethanolic fermentation in the lettuce in anoxia. Physiol Plant 109:28–33

    CAS  Google Scholar 

  • Keles Y, Oncel I (2002) Response of antioxidative defense system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790

    CAS  Google Scholar 

  • Kiely T, Donaldson D, Grube A (2004) Pesticides industry sales and usage: 2000 and 2001 market estimates. US Environmental Protection Agency, Washington, DC, 33 p

    Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949

    PubMed  CAS  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    PubMed  CAS  Google Scholar 

  • Kramer KJ, Morgan TD, Throne JE, Dowell FE, Bailey M, Howard JA (2000) Transgenic avidin maize is resistant to storage insect pests. Nat Biotechnol 18:670–674

    PubMed  CAS  Google Scholar 

  • Kristensen C, Morant M, Olsen CE, Ekstrom CT, Galbraith DW, Moller BL, Bak S (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci USA 102:1779–1784

    PubMed  CAS  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    PubMed  CAS  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    PubMed  CAS  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J16:223–233

    Google Scholar 

  • Lee JT, Prasad V, Yang PT, Wu JF, David Ho TH, Charng YY, Chan MT (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190

    CAS  Google Scholar 

  • Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–464

    PubMed  CAS  Google Scholar 

  • Liang HY, Maynard CA, Allen RD, Powell WA (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45:619–629

    PubMed  CAS  Google Scholar 

  • Lilley CJ, Wang D, Atkinson HJ, Urwin PE (2011) Effective delivery of a nematode-repellent peptide using a root-cap-specific promoter. Plant Biotechnol J 9:151–161

    PubMed  CAS  Google Scholar 

  • Liu B, Hibbard JK, Urwin PE, Atkinson HJ (2005) The production of synthetic chemodisruptive peptides in planta disrupts the establishment of cyst nematodes. Plant Biotechnol J 3:487–496

    PubMed  CAS  Google Scholar 

  • Liu K, Lei W, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced praline level in rice. Planta 226:1007–1016

    PubMed  CAS  Google Scholar 

  • Logemann E, Hahlbrock K (2002) Crosstalk among stress responses in plants: pathogen defense overrides UV protection through an inversely regulated ACE/ACE type of light-responsive gene promoter unit. Proc Natl Acad Sci USA 99:2428–2432

    PubMed  CAS  Google Scholar 

  • Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    PubMed  CAS  Google Scholar 

  • Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    PubMed  CAS  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    PubMed  CAS  Google Scholar 

  • Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11:559–565

    PubMed  CAS  Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology 13:362–365

    PubMed  CAS  Google Scholar 

  • Mckersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    PubMed  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti, R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical basis (Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change). Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Mehlo L, Gahakwa D, Nghia PT, Loc NT, Capell T, Gatehouse JA, Gatehouse AMR, Christou P (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc Natl Acad Sci USA 102:7812–7816

    PubMed  CAS  Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21:1003–1009

    PubMed  CAS  Google Scholar 

  • Mentag R, Luckevich M, Morency MJ, Seguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405–411

    PubMed  CAS  Google Scholar 

  • Miller BD, Timmer VR (1994) Steady-state nutrition of Pinus resinosa seedlings: response to nutrient loading, irrigation and hardening regimes. Tree Physiol 14:1327–1338

    PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    PubMed  CAS  Google Scholar 

  • Miura K, Jin JB, Hasegawa PM (2007) Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol 10:495–502

    PubMed  CAS  Google Scholar 

  • Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11

    PubMed  CAS  Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825

    PubMed  CAS  Google Scholar 

  • Mourgues F, Brisset MN, Chevreau E (1998) Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotechnol 16:203–210

    PubMed  CAS  Google Scholar 

  • Muench DG, Christopher ME, Good AG (1998) Cloning and expression of a hypoxic and nitrogen inducible maize alanine aminotransferase gene. Physiol Plant 103:503–512

    CAS  Google Scholar 

  • Muller TA, Fleischmann T, van der Meer JR, Kohler H-PE (2006) Purification and characterization of two enantioselective R-ketoglutarate-dependent dioxygenases, RdpA and SdpA from Sphingomonas herbicideovarans MH. Appl Environ Microbiol 72:4853–4861

    PubMed  CAS  Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479

    PubMed  CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi S, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    CAS  Google Scholar 

  • Musser FR, Shelton AM (2005) The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Manag Sci 61:508–510

    PubMed  CAS  Google Scholar 

  • Naimov S, Dukiandjiev S, de Maagd RA (2003) A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57

    PubMed  CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    PubMed  CAS  Google Scholar 

  • Nakashima K, Tran L-SP, Nguyen VD, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    PubMed  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/ SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    PubMed  CAS  Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    PubMed  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    PubMed  CAS  Google Scholar 

  • Oberschall A, Deak M, Torok K, Sass L, Vass I, Kovacs I, Feher A, Dudits D, Hovarth GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stress. Plant J 24:437–446

    PubMed  CAS  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383

    PubMed  CAS  Google Scholar 

  • Pääkkönen E, Vahala J, Pohjola M, Holopainen T, Kärenlampi L (1998) Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant Cell Environ 21:671–684

    Google Scholar 

  • Padgette SR, Taylor NB, Nida DL, Bailey MR, MacDonald J, Holden LR, Fuchs RL (1996) The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. J Nutr 126:702–716

    PubMed  CAS  Google Scholar 

  • Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F (2004) Galactinol synthase 1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158

    PubMed  CAS  Google Scholar 

  • Pareek A, Singla SL, Grover A (1998) Plant Hsp90 family with special reference to rice. J Biosci 23:361–367

    CAS  Google Scholar 

  • Park JR, McFarlane I, Phipps RH, Ceddia G (2011) The role of transgenic crops in sustainable development. Plant Biotechnol J 9:2–21

    Google Scholar 

  • Patra B, Ray S, Richter A, Majumder AL (2010) Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 Metabolic adjustment and signalling in response to stress and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma 245:143–152

    PubMed  CAS  Google Scholar 

  • Patterson DT (1995) Weeds in a changing climate. Weed Sci 43:685–701

    CAS  Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor Appl Genet 85:568–576

    CAS  Google Scholar 

  • Pinto YM, Kok RA, Baulcombe DC (1999) Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nat Biotechnol 17:702–707

    PubMed  CAS  Google Scholar 

  • Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R (2002) Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J 31:319–330

    PubMed  CAS  Google Scholar 

  • Porterfield DM, Crispi ML, Musgrave ME (1997) Changes in soluble sugar, starch, and alcohol dehydrogenase in Arabidopsis thaliana exposed to N2 diluted atmospheres. Plant Cell Physiol 38:1354–1358

    PubMed  CAS  Google Scholar 

  • Prandl R, Hinderhofer K, Eggers-Schumacher G, Schoffl F (1998) HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet 258:269–278

    PubMed  CAS  Google Scholar 

  • Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJ, Hogan SP (2005) Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53:9023–9030

    PubMed  CAS  Google Scholar 

  • Prieto-Dapena P, Catano R, Almoguera C, Jordano J (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142:1102–1112

    PubMed  CAS  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    PubMed  CAS  Google Scholar 

  • Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28:S298–S308

    CAS  Google Scholar 

  • Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozak K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707

    PubMed  CAS  Google Scholar 

  • Quimlo CA, Torrizo LB, Setter TL, Ellis M, Grover A, Abrigo EM, Oliva NP, Ella ES, Carpena AL, Ito O, Peacock WJ, Dennis E, Datta SK (2000) Enhancement of submergence tolerance in transgenic rice plants overproducing pyruvate decarboxylase. J Plant Physiol 156:516–521

    Google Scholar 

  • Quinet M, Ndayiragije A, Lefevre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    PubMed  CAS  Google Scholar 

  • Rahman M, Grover A, Peacock WJ, Dennis ES, Ellis MH (2001) Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Aust J Plant Physiol 28:1231–1241

    CAS  Google Scholar 

  • Rajamohan F, Alzate O, Cotrill JA, Curtiss A, Dean DH (1996) Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Natl Acad Sci USA 93:14338–14343

    PubMed  CAS  Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AM, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477

    PubMed  CAS  Google Scholar 

  • Rizhsky L, Hongjian L, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    PubMed  CAS  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    CAS  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    CAS  Google Scholar 

  • Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223:1329–1343

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Valverde R, Alia, Chen TH, Murata N (2000) Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22:449–453

    PubMed  CAS  Google Scholar 

  • Sanghera GS, Wani SH, Singh G, Kashyap PL, Singh NB (2011) Designing crop plants for biotic stresses using transgenic approach. Vegetos 24:1–25

    Google Scholar 

  • Savary S, Mila A, Willocquet L, Esker PD, Carisse O, McRoberts N (2011) Risk factors for crop health under global change and agricultural shifts: a framework of analyses using rice in tropical and subtropical Asia as a model. Phytopathology 101:696–709

    PubMed  CAS  Google Scholar 

  • Savitch LV, Allard G, Seki M, Robert L, Tinker N, Huner NPA, Shinozaki K, Singh (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539

    Google Scholar 

  • Schleinitz KM, Kleinsteuber S, Vallaeys T, Babel W (2004) Localization and characterization of two novel genes encoding stereospecific dioxygenases catalyzing 2(2,4-dichlorophenoxy) propionate cleavage in Delftia acidovorans MC1. Appl Environ Microbiol 70:5357–5365

    PubMed  CAS  Google Scholar 

  • Schnee C, Kollner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    PubMed  CAS  Google Scholar 

  • Sen Gupta A, Heinen JL, Holady AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    CAS  Google Scholar 

  • Shao M, Wang JS, Dean RA, Lin YJ, Gao XW, Hu SJ (2008) Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol J 6:73–81

    PubMed  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    PubMed  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1999) Molecular responses to drought stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes, Austin, TX, pp 11–28

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217–223

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    PubMed  CAS  Google Scholar 

  • Sinclair BJ, Jaco Klok C, Chown SL (2004) Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing. J Exp Biol 207:1287–1294

    PubMed  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    PubMed  CAS  Google Scholar 

  • Sivamani E, Brey CW, Talbert LE, Young MA, Dyer WE, Kaniewski WK, Qu RD (2002) Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transgenic Res 11:31–41

    PubMed  CAS  Google Scholar 

  • Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 5:503–512

    Google Scholar 

  • Stewart SD, Adamczyk JJ, Knighten KS, Davis FM (2001) Impact of Bt cottons expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of noctuid (Lepidoptera) larvae. J Econ Entomol 94:752–760

    PubMed  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456

    PubMed  CAS  Google Scholar 

  • Sudarshana MR, Roy G, Falk BW (2007) Methods for engineering resistance to plant viruses. Methods Mol Biol 354:183–195

    PubMed  CAS  Google Scholar 

  • Sullivan JH, Teramura AH (1990) Field study of the interaction between solar UV-B radiation and drought on photosynthesis and growth in soybean. Plant Physiol 92:141–146

    PubMed  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Montagu MV, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    PubMed  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of osmolyte mannitol. Science 259:508–510

    PubMed  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    PubMed  CAS  Google Scholar 

  • Tran LP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628

    PubMed  CAS  Google Scholar 

  • Turner NC, Shahal A, Berger JD, Chaturvedi SK, French RJ, Ludwig C, Mannur DM, Singh SJ, Yadava HS (2007) Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. J Exp Bot 58:187–194

    PubMed  CAS  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozakia K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 41:17588–17593

    Google Scholar 

  • Urwin PE, Atkinson HJ, Waller DA, Mcpherson MJ (1995) Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J 8:121–131

    PubMed  CAS  Google Scholar 

  • Vaeck M, Reynaerts A, Hofte H, Jansens S, Debeuckeleer M, Dean C, Zabeau M, Vanmontagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    CAS  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    PubMed  CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    PubMed  CAS  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    CAS  Google Scholar 

  • Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.GM Crops 1:199–206

    Google Scholar 

  • Walter MH (1989) The induction of phenylpropanoid biosynthetic enzymes by UV light or fungal elicitor in cultured parsley cells is overridden by a heat-shock treatment. Planta 177:1–8

    CAS  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    PubMed  CAS  Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, McCourt P, Huang Y (2005a) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    PubMed  CAS  Google Scholar 

  • Wani SH (2010) Inducing fungus resistance in plants through biotechnology. Notes Sci Biol 2:14–21

    CAS  Google Scholar 

  • Wani SH, Sanghera GS (2010) Genetic engineering for viral disease management in plants. Notes Sci Biol 2:20–28

    CAS  Google Scholar 

  • Waterhouse PM, Graham HW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    PubMed  CAS  Google Scholar 

  • Waters I, Morrell S, Greenway H, Colmer TD (1991) Effects of anoxia on wheat seedlings. II. Influence of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation, and sugar levels. J Exp Bot 42:1437–1447

    CAS  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100:2760–2765

    PubMed  CAS  Google Scholar 

  • Weinstein DA, Beloin RM, Yanai RD (1991) Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses. Tree Physiol 9:127–146

    PubMed  CAS  Google Scholar 

  • Welfare K, Yeo AR, Flowers TJ (2002) Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Environ Pollut 120:397–403

    PubMed  CAS  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    PubMed  CAS  Google Scholar 

  • Woiwod IP (1997) Detecting the effect of climate change on Lepidoptera. J Insect Conserv 1:149–158

    Google Scholar 

  • Wolfe W, Ziska L, Petzoldt C, Seaman A, Chase L, Hayhoe K (2007) Projected change in climate thresholds in the northeastern U.S: implications for crops, pests, livestock and farmers. Mitigation Adapt Strategies Glob Change 13(5–6):555–575

    Google Scholar 

  • Xiong L, Zhu JK (2001) Plant abiotic stress signal transduction: molecular and genetic perspectives. Physiol Plant 112:152–166

    PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Xu K, Xia X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    PubMed  CAS  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    PubMed  CAS  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    PubMed  CAS  Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Google Scholar 

  • Yang CY, Ho YC, Pang JC, Huang SS, Tschen JSM (2009) Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresour Technol 100:1454–1458

    PubMed  CAS  Google Scholar 

  • Ye RJ, Huang HQ, Yang Z, Chen TY, Liu L, Li XH, Chen H, Lin YJ (2009) Development of insect-resistant transgenic rice with Cry1C-free endosperm. Pest Manag Sci 65:1015–1020

    PubMed  CAS  Google Scholar 

  • Zhang H-X, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    PubMed  CAS  Google Scholar 

  • Zhao HW, Chen YJ, Hu YL, Gao Y, Lin ZP (2000) Construction of a trehalose-6-phosphate synthase gene driven by drought responsive promoter and expression of drought-resistance in transgenic tobacco. Acta Bot Sin 42:616–619

    CAS  Google Scholar 

  • Zhao BY, Lin XH, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102:15383–15388

    PubMed  CAS  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    PubMed  CAS  Google Scholar 

  • Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD, Straka JG (2003) Cities as harbingers of climate change: common ragweed, urbanization, and public health. J Allerg Clin Immunol 111:290–295

    Google Scholar 

  • Ziska LH, Faulkner S, Lydon J (2004) Changes in biomass and root: shoot ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: implications for control with glyphosate. Weed Sci 52:584–588

    CAS  Google Scholar 

  • Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a meta-analysis. Glob Change Biol 12:27–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram C. Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yadav, R.C., Solanke, A.U., Kumar, P., Pattanayak, D., Yadav, N.R., Kumar, P.A. (2013). Genetic Engineering for Tolerance to Climate Change-Related Traits. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37045-8_7

Download citation

Publish with us

Policies and ethics